Chen Xiaobing, Levy Jonathan M, Hou Austin, Winters Christine, Azzam Rita, Sousa Alioscka A, Leapman Richard D, Nicoll Roger A, Reese Thomas S
Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892;
Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158;
Proc Natl Acad Sci U S A. 2015 Dec 15;112(50):E6983-92. doi: 10.1073/pnas.1517045112. Epub 2015 Nov 24.
The postsynaptic density (PSD)-95 family of membrane-associated guanylate kinases (MAGUKs) are major scaffolding proteins at the PSD in glutamatergic excitatory synapses, where they maintain and modulate synaptic strength. How MAGUKs underlie synaptic strength at the molecular level is still not well understood. Here, we explore the structural and functional roles of MAGUKs at hippocampal excitatory synapses by simultaneous knocking down PSD-95, PSD-93, and synapse-associated protein (SAP)102 and combining electrophysiology and transmission electron microscopic (TEM) tomography imaging to analyze the resulting changes. Acute MAGUK knockdown greatly reduces synaptic transmission mediated by α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptors (AMPARs) and N-methyl-d-aspartate receptors (NMDARs). This knockdown leads to a significant rise in the number of silent synapses, diminishes the size of PSDs without changes in pre- or postsynaptic membrane, and depletes the number of membrane-associated PSD-95-like vertical filaments and transmembrane structures, identified as AMPARs and NMDARs by EM tomography. The differential distribution of these receptor-like structures and dependence of their abundance on PSD size matches that of AMPARs and NMDARs in the hippocampal synapses. The loss of these structures following MAGUK knockdown tracks the reduction in postsynaptic AMPAR and NMDAR transmission, confirming the structural identities of these two types of receptors. These results demonstrate that MAGUKs are required for anchoring both types of glutamate receptors at the PSD and are consistent with a structural model where MAGUKs, corresponding to membrane-associated vertical filaments, are the essential structural proteins that anchor and organize both types of glutamate receptors and govern the overall molecular organization of the PSD.
膜相关鸟苷酸激酶(MAGUK)家族的突触后致密蛋白(PSD)-95是谷氨酸能兴奋性突触中PSD的主要支架蛋白,在那里它们维持和调节突触强度。MAGUK如何在分子水平上构成突触强度仍未得到很好的理解。在这里,我们通过同时敲低PSD-95、PSD-93和突触相关蛋白(SAP)102,并结合电生理学和透射电子显微镜(TEM)断层扫描成像来分析由此产生的变化,探讨MAGUK在海马兴奋性突触中的结构和功能作用。急性敲低MAGUK可大大降低由α-氨基-3-羟基-5-甲基-4-异恶唑丙酸受体(AMPAR)和N-甲基-D-天冬氨酸受体(NMDAR)介导的突触传递。这种敲低导致沉默突触数量显著增加,减小了PSD的大小,而突触前或突触后膜没有变化,并耗尽了膜相关的PSD-95样垂直细丝和跨膜结构的数量,通过电子断层扫描鉴定为AMPAR和NMDAR。这些受体样结构的差异分布及其丰度对PSD大小的依赖性与海马突触中AMPAR和NMDAR的分布相匹配。MAGUK敲低后这些结构的丧失与突触后AMPAR和NMDAR传递的减少相一致,证实了这两种受体的结构身份。这些结果表明,MAGUK是将两种类型的谷氨酸受体锚定在PSD所必需的,并且与一个结构模型一致,其中MAGUK对应于膜相关的垂直细丝,是锚定和组织两种类型的谷氨酸受体并控制PSD整体分子组织的必需结构蛋白。