Suppr超能文献

超声内镜检查用于胃癌分期的Meta 分析。

EUS for the staging of gastric cancer: a meta-analysis.

机构信息

Meta-Analysis Unit, Department of Oncological and Surgical Sciences, University of Padova, Padova, Italy.

出版信息

Gastrointest Endosc. 2011 Jun;73(6):1122-34. doi: 10.1016/j.gie.2011.01.030. Epub 2011 Mar 27.

Abstract

BACKGROUND

The role of EUS in the locoregional staging of gastric carcinoma is undefined.

OBJECTIVE

We aimed to comprehensively review and quantitatively summarize the available evidence on the staging performance of EUS.

DESIGN

We systematically searched the MEDLINE, Cochrane, CANCERLIT, and EMBASE databases for relevant studies published until July 2010.

SETTING

Formal meta-analysis of diagnostic accuracy parameters was performed by using a bivariate random-effects model.

PATIENTS

Fifty-four studies enrolling 5601 patients with gastric cancer undergoing disease staging with EUS were eligible for the meta-analysis.

MAIN OUTCOME MEASUREMENTS

EUS staging accuracy across eligible studies was measured by computing overall sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), and diagnostic odds ratio (DOR).

RESULTS

EUS can differentiate T1-2 from T3-4 gastric cancer with high accuracy, with overall sensitivity, specificity, PLR, NLR, and DOR of 0.86 (95% CI, 0.81-0.90), 0.91 (95% CI, 0.89-0.93), 9.8 (95% CI, 7.5-12.8), 0.15 (95% CI, 0.11-0.21), and 65 (95% CI, 41-105), respectively. In contrast, the diagnostic performance of EUS for lymph node status is less reliable, with overall sensitivity, specificity, PLR, NLR, and DOR of 0.69 (95% CI, 0.63-0.74), 0.84 (95% CI, 0.81-0.88), 4.4 (95% CI, 3.6-5.4), 0.37 (95% CI, 0.32-0.44), and 12 (95% CI, 9-16), respectively. Results regarding single T categories (including T1 substages) and Bayesian nomograms to calculate posttest probabilities for any target condition prevalence are also provided.

LIMITATIONS

Statistical heterogeneity was generally high; unfortunately, subgroup analysis did not identify a consistent source of the heterogeneity.

CONCLUSIONS

Our results support the use of EUS for the locoregional staging of gastric cancer, which can affect the therapeutic management of these patients. However, clinicians must be aware of the performance limits of this staging tool.

摘要

背景

EUS 在胃癌局部区域分期中的作用尚未明确。

目的

我们旨在全面回顾和定量总结 EUS 分期表现的现有证据。

设计

我们系统地检索了 MEDLINE、Cochrane、CANCERLIT 和 EMBASE 数据库,以获取截至 2010 年 7 月发表的相关研究。

设置

使用双变量随机效应模型对诊断准确性参数进行正式的荟萃分析。

患者

54 项研究共纳入 5601 例接受 EUS 疾病分期的胃癌患者,符合荟萃分析的条件。

主要观察指标

通过计算总体敏感性、特异性、阳性似然比(PLR)、阴性似然比(NLR)和诊断比值比(DOR),评估纳入研究的 EUS 分期准确性。

结果

EUS 可高度准确地区分 T1-2 期和 T3-4 期胃癌,总体敏感性、特异性、PLR、NLR 和 DOR 分别为 0.86(95%CI,0.81-0.90)、0.91(95%CI,0.89-0.93)、9.8(95%CI,7.5-12.8)、0.15(95%CI,0.11-0.21)和 65(95%CI,41-105)。相比之下,EUS 对淋巴结状态的诊断性能不太可靠,总体敏感性、特异性、PLR、NLR 和 DOR 分别为 0.69(95%CI,0.63-0.74)、0.84(95%CI,0.81-0.88)、4.4(95%CI,3.6-5.4)、0.37(95%CI,0.32-0.44)和 12(95%CI,9-16)。还提供了关于单个 T 分期(包括 T1 亚期)和贝叶斯列线图的结果,用于计算任何目标疾病发生率的后验概率。

局限性

总体统计异质性较高;遗憾的是,亚组分析未能确定异质性的一致来源。

结论

我们的结果支持将 EUS 用于胃癌的局部区域分期,这可能会影响这些患者的治疗管理。然而,临床医生必须意识到该分期工具的性能限制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验