Suppr超能文献

在具有氧化还原活性表面活性剂的微流控通道中利用电化学产生的浓度梯度进行溶质横向传输。

Lateral transport of solutes in microfluidic channels using electrochemically generated gradients in redox-active surfactants.

机构信息

Department of Chemical and Biological Engineering, University of Wisconsin, 1415 Engineering Drive, Madison, Wisconsin 53706-1691, USA.

出版信息

Anal Chem. 2011 Apr 15;83(8):3033-41. doi: 10.1021/ac103058g. Epub 2011 Mar 29.

Abstract

We report principles for a continuous flow process that can separate solutes based on a driving force for selective transport that is generated by a lateral concentration gradient of a redox-active surfactant across a microfluidic channel. Microfluidic channels fabricated with gold electrodes lining each vertical wall were used to electrochemically generate concentration gradients of the redox-active surfactant 11-ferrocenylundecyl-trimethylammonium bromide (FTMA) in a direction perpendicular to the flow. The interactions of three solutes (a hydrophobic dye, 1-phenylazo-2-naphthylamine (yellow AB), an amphiphilic molecule, 2-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-pentanoyl)-1-hexadecanoyl-sn-glycero-3-phosphocholine (BODIPY C(5)-HPC), and an organic salt, 1-methylpyridinium-3-sulfonate (MPS)) with the lateral gradients in surfactant/micelle concentration were shown to drive the formation of solute-specific concentration gradients. Two distinct physical mechanisms were identified to lead to the solute concentration gradients: solubilization of solutes by micelles and differential adsorption of the solutes onto the walls of the microchannels in the presence of the surfactant concentration gradient. These two mechanisms were used to demonstrate delipidation of a mixture of BODIPY C(5)-HPC (lipid) and MPS and purification of BODIPY C(5)-HPC from a mixture of BODIPY C(5)-HPC and yellow AB. Overall, the results of this study demonstrate that lateral concentration gradients of redox-active surfactants formed within microfluidic channels can be used to transport solutes across the microfluidic channels in a solute-dependent manner. The approach employs electrical potentials (<1 V) that are sufficiently small to avoid electrolysis of water, can be performed in solutions having high ionic strength (>0.1M), and offers the basis of continuous processes for the purification or separation of solutes in microscale systems.

摘要

我们报告了一种连续流动过程的原理,该过程可以根据在微流道中横向产生的选择性传输驱动力来分离溶质,该驱动力是由氧化还原活性表面活性剂的浓度梯度产生的。使用带有金电极的微流道来电化学产生氧化还原活性表面活性剂 11- 二茂铁十一烷基三甲基溴化铵(FTMA)在垂直于流动方向上的浓度梯度。三种溶质(疏水性染料 1- 苯基偶氮-2-萘基胺(黄 AB)、两亲分子 2-(4,4-二氟-5,7-二甲基-4-硼-3a,4a-二氮杂-s-茚并-3-戊酰基)-1-十六酰基-sn-甘油-3-磷酸胆碱(BODIPY C(5)-HPC)和有机盐 1- 甲基吡啶-3-磺酸盐(MPS))与表面活性剂/胶束浓度的横向梯度相互作用,驱动溶质形成特定的浓度梯度。确定了两种不同的物理机制导致溶质浓度梯度:通过胶束增溶溶质和在存在表面活性剂浓度梯度的情况下,溶质在微通道壁上的差异吸附。这两种机制用于证明 BODIPY C(5)-HPC(脂质)和 MPS 的混合物的去脂化,以及从 BODIPY C(5)-HPC 和黄 AB 的混合物中纯化 BODIPY C(5)-HPC。总体而言,这项研究的结果表明,在微流道内形成的氧化还原活性表面活性剂的横向浓度梯度可以用于以溶质依赖的方式将溶质输送穿过微流道。该方法采用的电势(<1V)足够小,可避免水的电解,可以在具有高离子强度(>0.1M)的溶液中进行,并且为微尺度系统中溶质的纯化或分离提供了连续过程的基础。

相似文献

6
A microfluidic fuel cell with flow-through porous electrodes.一种具有流通式多孔电极的微流控燃料电池。
J Am Chem Soc. 2008 Mar 26;130(12):4000-6. doi: 10.1021/ja078248c. Epub 2008 Mar 4.
7
Surfactant solutions and porous substrates: spreading and imbibition.表面活性剂溶液与多孔基质:铺展与吸液
Adv Colloid Interface Sci. 2004 Nov 29;111(1-2):3-27. doi: 10.1016/j.cis.2004.07.007.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验