Suppr超能文献

一种神经效率高的感觉群体解码实现。

A neurally efficient implementation of sensory population decoding.

机构信息

Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California 94143, USA.

出版信息

J Neurosci. 2011 Mar 30;31(13):4868-77. doi: 10.1523/JNEUROSCI.6776-10.2011.

Abstract

A sensory stimulus evokes activity in many neurons, creating a population response that must be "decoded" by the brain to estimate the parameters of that stimulus. Most decoding models have suggested complex neural circuits that compute optimal estimates of sensory parameters on the basis of responses in many sensory neurons. We propose a slightly suboptimal but practically simpler decoder. Decoding neurons integrate their inputs across 100 ms, incoming spikes are weighted by the preferred stimulus of the neuron of origin, and a local, cellular nonlinearity approximates divisive normalization without dividing explicitly. The suboptimal decoder includes two simplifying approximations. It uses estimates of firing rate across the population rather than computing the total population response, and it implements divisive normalization with local cellular mechanisms of single neurons rather than more complicated neural circuit mechanisms. When applied to the practical problem of estimating target speed from a realistic simulation of the population response in extrastriate visual area MT, the suboptimal decoder has almost the same accuracy and precision as traditional decoding models. It succeeds in predicting the precision and imprecision of motor behavior using a suboptimal decoding computation because it adds only a small amount of imprecision to the code for target speed in MT, which is itself imprecise.

摘要

感觉刺激会在许多神经元中引发活动,产生群体反应,大脑必须对其进行“解码”,以估计该刺激的参数。大多数解码模型都提出了复杂的神经回路,这些回路基于许多感觉神经元的反应,计算出对感觉参数的最佳估计。我们提出了一个稍差但实际更简单的解码器。解码神经元在 100 毫秒内整合其输入,传入的尖峰由起源神经元的最佳刺激加权,局部细胞非线性近似于无显式除法的除法归一化。次优解码器包含两个简化的近似值。它使用跨群体的估计发射率,而不是计算总体群体反应,并且它使用单个神经元的局部细胞机制而不是更复杂的神经回路机制来实现除法归一化。当应用于从外纹状视觉区 MT 的群体反应的实际模拟中估计目标速度的实际问题时,次优解码器与传统解码模型具有几乎相同的准确性和精度。它通过使用次优解码计算成功预测了运动行为的精度和不准确性,因为它仅向 MT 中的目标速度代码添加了少量的不准确性,而 MT 本身的准确性就不高。

相似文献

2
4
Jointly efficient encoding and decoding in neural populations.神经群体中的联合有效编码和解码。
PLoS Comput Biol. 2024 Jul 10;20(7):e1012240. doi: 10.1371/journal.pcbi.1012240. eCollection 2024 Jul.
7
On the relation between encoding and decoding of neuronal spikes.神经元尖峰的编码和解码之间的关系。
Neural Comput. 2012 Jun;24(6):1408-25. doi: 10.1162/NECO_a_00279. Epub 2012 Feb 24.
9
Functional diversity among sensory neurons from efficient coding principles.从有效编码原理看感觉神经元的功能多样性。
PLoS Comput Biol. 2019 Nov 14;15(11):e1007476. doi: 10.1371/journal.pcbi.1007476. eCollection 2019 Nov.

引用本文的文献

3
How and why neural and motor variation are related.神经变异与运动变异是如何关联的以及为何会有关联。
Curr Opin Neurobiol. 2015 Aug;33:110-6. doi: 10.1016/j.conb.2015.03.008. Epub 2015 Apr 2.
5
Overlapping structures in sensory-motor mappings.感觉运动映射中的重叠结构。
PLoS One. 2014 Jan 2;9(1):e84240. doi: 10.1371/journal.pone.0084240. eCollection 2014.
6

本文引用的文献

5
9
Bayesian inference with probabilistic population codes.基于概率群体编码的贝叶斯推理。
Nat Neurosci. 2006 Nov;9(11):1432-8. doi: 10.1038/nn1790. Epub 2006 Oct 22.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验