Suppr超能文献

一种神经效率高的感觉群体解码实现。

A neurally efficient implementation of sensory population decoding.

机构信息

Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California 94143, USA.

出版信息

J Neurosci. 2011 Mar 30;31(13):4868-77. doi: 10.1523/JNEUROSCI.6776-10.2011.

Abstract

A sensory stimulus evokes activity in many neurons, creating a population response that must be "decoded" by the brain to estimate the parameters of that stimulus. Most decoding models have suggested complex neural circuits that compute optimal estimates of sensory parameters on the basis of responses in many sensory neurons. We propose a slightly suboptimal but practically simpler decoder. Decoding neurons integrate their inputs across 100 ms, incoming spikes are weighted by the preferred stimulus of the neuron of origin, and a local, cellular nonlinearity approximates divisive normalization without dividing explicitly. The suboptimal decoder includes two simplifying approximations. It uses estimates of firing rate across the population rather than computing the total population response, and it implements divisive normalization with local cellular mechanisms of single neurons rather than more complicated neural circuit mechanisms. When applied to the practical problem of estimating target speed from a realistic simulation of the population response in extrastriate visual area MT, the suboptimal decoder has almost the same accuracy and precision as traditional decoding models. It succeeds in predicting the precision and imprecision of motor behavior using a suboptimal decoding computation because it adds only a small amount of imprecision to the code for target speed in MT, which is itself imprecise.

摘要

感觉刺激会在许多神经元中引发活动,产生群体反应,大脑必须对其进行“解码”,以估计该刺激的参数。大多数解码模型都提出了复杂的神经回路,这些回路基于许多感觉神经元的反应,计算出对感觉参数的最佳估计。我们提出了一个稍差但实际更简单的解码器。解码神经元在 100 毫秒内整合其输入,传入的尖峰由起源神经元的最佳刺激加权,局部细胞非线性近似于无显式除法的除法归一化。次优解码器包含两个简化的近似值。它使用跨群体的估计发射率,而不是计算总体群体反应,并且它使用单个神经元的局部细胞机制而不是更复杂的神经回路机制来实现除法归一化。当应用于从外纹状视觉区 MT 的群体反应的实际模拟中估计目标速度的实际问题时,次优解码器与传统解码模型具有几乎相同的准确性和精度。它通过使用次优解码计算成功预测了运动行为的精度和不准确性,因为它仅向 MT 中的目标速度代码添加了少量的不准确性,而 MT 本身的准确性就不高。

相似文献

1
A neurally efficient implementation of sensory population decoding.
J Neurosci. 2011 Mar 30;31(13):4868-77. doi: 10.1523/JNEUROSCI.6776-10.2011.
2
Sensory population decoding for visually guided movements.
Neuron. 2013 Jul 10;79(1):167-79. doi: 10.1016/j.neuron.2013.05.026.
3
Predictive Ensemble Decoding of Acoustical Features Explains Context-Dependent Receptive Fields.
J Neurosci. 2016 Dec 7;36(49):12338-12350. doi: 10.1523/JNEUROSCI.4648-15.2016.
4
Jointly efficient encoding and decoding in neural populations.
PLoS Comput Biol. 2024 Jul 10;20(7):e1012240. doi: 10.1371/journal.pcbi.1012240. eCollection 2024 Jul.
5
Divisive Normalization Predicts Adaptation-Induced Response Changes in Macaque Inferior Temporal Cortex.
J Neurosci. 2016 Jun 1;36(22):6116-28. doi: 10.1523/JNEUROSCI.2011-15.2016.
7
On the relation between encoding and decoding of neuronal spikes.
Neural Comput. 2012 Jun;24(6):1408-25. doi: 10.1162/NECO_a_00279. Epub 2012 Feb 24.
8
Model-based decoding, information estimation, and change-point detection techniques for multineuron spike trains.
Neural Comput. 2011 Jan;23(1):1-45. doi: 10.1162/NECO_a_00058. Epub 2010 Oct 21.
9
Functional diversity among sensory neurons from efficient coding principles.
PLoS Comput Biol. 2019 Nov 14;15(11):e1007476. doi: 10.1371/journal.pcbi.1007476. eCollection 2019 Nov.
10
A sensory-motor decoder that transforms neural responses in extrastriate area MT into smooth pursuit eye movements.
J Neurophysiol. 2023 Sep 1;130(3):652-670. doi: 10.1152/jn.00200.2023. Epub 2023 Aug 16.

引用本文的文献

1
Expanding the V1-MT model to the estimation of perceived fluid direction.
Sci Rep. 2025 Apr 26;15(1):14681. doi: 10.1038/s41598-025-99069-7.
2
The Neural Code for Motor Control in the Cerebellum and Oculomotor Brainstem.
eNeuro. 2014 Nov 12;1(1). doi: 10.1523/ENEURO.0004-14.2014. eCollection 2014 Nov-Dec.
3
How and why neural and motor variation are related.
Curr Opin Neurobiol. 2015 Aug;33:110-6. doi: 10.1016/j.conb.2015.03.008. Epub 2015 Apr 2.
4
Focality, stochasticity and neuroanatomic propagation in ALS pathogenesis.
Exp Neurol. 2014 Dec;262 Pt B:121-6. doi: 10.1016/j.expneurol.2014.07.021. Epub 2014 Aug 6.
5
Overlapping structures in sensory-motor mappings.
PLoS One. 2014 Jan 2;9(1):e84240. doi: 10.1371/journal.pone.0084240. eCollection 2014.
6
Sensory population decoding for visually guided movements.
Neuron. 2013 Jul 10;79(1):167-79. doi: 10.1016/j.neuron.2013.05.026.
7
Control of the gain of visual-motor transmission occurs in visual coordinates for smooth pursuit eye movements.
J Neurosci. 2013 May 29;33(22):9420-30. doi: 10.1523/JNEUROSCI.4846-12.2013.
9
Tuned normalization explains the size of attention modulations.
Neuron. 2012 Feb 23;73(4):803-13. doi: 10.1016/j.neuron.2012.01.006.

本文引用的文献

1
Visual guidance of smooth-pursuit eye movements: sensation, action, and what happens in between.
Neuron. 2010 May 27;66(4):477-91. doi: 10.1016/j.neuron.2010.03.027.
2
Spatial and temporal integration of visual motion signals for smooth pursuit eye movements in monkeys.
J Neurophysiol. 2009 Oct;102(4):2013-25. doi: 10.1152/jn.00611.2009. Epub 2009 Aug 5.
5
Probabilistic population codes for Bayesian decision making.
Neuron. 2008 Dec 26;60(6):1142-52. doi: 10.1016/j.neuron.2008.09.021.
6
Context-dependent changes in functional circuitry in visual area MT.
Neuron. 2008 Oct 9;60(1):162-73. doi: 10.1016/j.neuron.2008.08.007.
7
Variation, signal, and noise in cerebellar sensory-motor processing for smooth-pursuit eye movements.
J Neurosci. 2007 Jun 20;27(25):6832-42. doi: 10.1523/JNEUROSCI.1323-07.2007.
8
Time course of precision in smooth-pursuit eye movements of monkeys.
J Neurosci. 2007 Mar 14;27(11):2987-98. doi: 10.1523/JNEUROSCI.5072-06.2007.
9
Bayesian inference with probabilistic population codes.
Nat Neurosci. 2006 Nov;9(11):1432-8. doi: 10.1038/nn1790. Epub 2006 Oct 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验