Lazar Aurel A, Slutskiy Yevgeniy B
Department of Electrical Engineering, Columbia University, New York, NY, USA,
J Comput Neurosci. 2015 Feb;38(1):1-24. doi: 10.1007/s10827-014-0522-8. Epub 2014 Sep 2.
We present a multi-input multi-output neural circuit architecture for nonlinear processing and encoding of stimuli in the spike domain. In this architecture a bank of dendritic stimulus processors implements nonlinear transformations of multiple temporal or spatio-temporal signals such as spike trains or auditory and visual stimuli in the analog domain. Dendritic stimulus processors may act on both individual stimuli and on groups of stimuli, thereby executing complex computations that arise as a result of interactions between concurrently received signals. The results of the analog-domain computations are then encoded into a multi-dimensional spike train by a population of spiking neurons modeled as nonlinear dynamical systems. We investigate general conditions under which such circuits faithfully represent stimuli and demonstrate algorithms for (i) stimulus recovery, or decoding, and (ii) identification of dendritic stimulus processors from the observed spikes. Taken together, our results demonstrate a fundamental duality between the identification of the dendritic stimulus processor of a single neuron and the decoding of stimuli encoded by a population of neurons with a bank of dendritic stimulus processors. This duality result enabled us to derive lower bounds on the number of experiments to be performed and the total number of spikes that need to be recorded for identifying a neural circuit.
我们提出了一种用于在尖峰域中对刺激进行非线性处理和编码的多输入多输出神经电路架构。在这种架构中,一组树突状刺激处理器在模拟域中对多个时间或时空信号(如尖峰序列或听觉和视觉刺激)进行非线性变换。树突状刺激处理器可以作用于单个刺激和刺激组,从而执行由于同时接收的信号之间的相互作用而产生的复杂计算。然后,模拟域计算的结果由一群建模为非线性动力系统的尖峰神经元编码为多维尖峰序列。我们研究了此类电路忠实地表示刺激的一般条件,并展示了用于(i)刺激恢复或解码,以及(ii)从观察到的尖峰中识别树突状刺激处理器的算法。综上所述,我们的结果证明了单个神经元的树突状刺激处理器的识别与具有一组树突状刺激处理器的一群神经元编码的刺激的解码之间的基本对偶性。这种对偶性结果使我们能够得出识别神经电路所需进行的实验数量和需要记录的尖峰总数的下限。