Suppr超能文献

纳米级组织工程:对细胞-材料相互作用的空间控制。

Nanoscale tissue engineering: spatial control over cell-materials interactions.

机构信息

Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.

出版信息

Nanotechnology. 2011 May 27;22(21):212001. doi: 10.1088/0957-4484/22/21/212001. Epub 2011 Mar 31.

Abstract

Cells interact with the surrounding environment by making tens to hundreds of thousands of nanoscale interactions with extracellular signals and features. The goal of nanoscale tissue engineering is to harness these interactions through nanoscale biomaterials engineering in order to study and direct cellular behavior. Here, we review two- and three-dimensional (2- and 3D) nanoscale tissue engineering technologies, and provide a holistic overview of the field. Techniques that can control the average spacing and clustering of cell adhesion ligands are well established and have been highly successful in describing cell adhesion and migration in 2D. Extension of these engineering tools to 3D biomaterials has created many new hydrogel and nanofiber scaffold technologies that are being used to design in vitro experiments with more physiologically relevant conditions. Researchers are beginning to study complex cell functions in 3D. However, there is a need for biomaterials systems that provide fine control over the nanoscale presentation of bioactive ligands in 3D. Additionally, there is a need for 2- and 3D techniques that can control the nanoscale presentation of multiple bioactive ligands and that can control the temporal changes in the cellular microenvironment.

摘要

细胞通过与细胞外信号和特征进行数万至数十万纳米级的相互作用来与周围环境相互作用。纳米级组织工程的目标是通过纳米级生物材料工程利用这些相互作用,以便研究和指导细胞行为。在这里,我们回顾了二维和三维(2D 和 3D)纳米级组织工程技术,并提供了该领域的全面概述。可以控制细胞黏附配体平均间隔和聚集的技术已经成熟,并在描述 2D 中的细胞黏附和迁移方面取得了巨大成功。这些工程工具在 3D 生物材料中的扩展已经创造了许多新的水凝胶和纳米纤维支架技术,这些技术正在被用于设计具有更生理相关条件的体外实验。研究人员开始在 3D 中研究复杂的细胞功能。然而,需要有生物材料系统来精细控制 3D 中生物活性配体的纳米级呈现。此外,还需要能够控制多个生物活性配体的纳米级呈现并能够控制细胞微环境的时间变化的 2D 和 3D 技术。

相似文献

9
Supramolecular crafting of cell adhesion.细胞黏附的超分子构建
Biomaterials. 2007 Nov;28(31):4608-18. doi: 10.1016/j.biomaterials.2007.06.026. Epub 2007 Jul 27.

引用本文的文献

2
Encoding microcarriers for biomedicine.用于生物医学的编码微载体。
Smart Med. 2023 Feb 14;2(1):e20220009. doi: 10.1002/SMMD.20220009. eCollection 2023 Feb.
3
DNA origami: Interrogating the nano-landscape of immune receptor activation.DNA 折纸术:探究免疫受体激活的纳米景观。
Biophys J. 2024 Aug 6;123(15):2211-2223. doi: 10.1016/j.bpj.2023.10.013. Epub 2023 Oct 14.
7
Cell-Instructive Surface Gradients of Photoresponsive Amyloid-like Fibrils.光响应性类似淀粉样纤维的细胞诱导表面梯度。
ACS Biomater Sci Eng. 2021 Oct 11;7(10):4798-4808. doi: 10.1021/acsbiomaterials.1c00889. Epub 2021 Sep 13.

本文引用的文献

1
Functional Molecular Thin Films: Topological Templates for the Chemoselective Ligation of Antigenic Peptides to Self-Assembled Monolayers.
Angew Chem Int Ed Engl. 1999 Mar 1;38(5):696-699. doi: 10.1002/(SICI)1521-3773(19990301)38:5<696::AID-ANIE696>3.0.CO;2-L.
2
Hydrogels in regenerative medicine.水凝胶在再生医学中的应用。
Adv Mater. 2009 Sep 4;21(32-33):3307-29. doi: 10.1002/adma.200802106.
7
Cell-laden microengineered gelatin methacrylate hydrogels.细胞负载的微工程明胶甲基丙烯酸盐水凝胶。
Biomaterials. 2010 Jul;31(21):5536-44. doi: 10.1016/j.biomaterials.2010.03.064. Epub 2010 Apr 24.
8
10
Biomimetic hydrogels with pro-angiogenic properties.具有促血管生成特性的仿生水凝胶。
Biomaterials. 2010 May;31(14):3840-7. doi: 10.1016/j.biomaterials.2010.01.104. Epub 2010 Feb 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验