Ducommun B, Cance J, Wright M
Laboratoire de Pharmacologie et de Toxicologie Fondamentales, Centre National de la Recherche Scientifique, Toulouse, France.
J Cell Physiol. 1990 Oct;145(1):120-8. doi: 10.1002/jcp.1041450117.
Regulation of alpha- and beta-tubulin isotype synthesis during the cell cycle has been studied in the myxomycete Physarum polycephalum, by subjecting synchronous plasmodia to temperature shifts and pharmacological perturbations. Temperature shifts interfered with the regulation of tubulin synthesis. Inhibition of DNA synthesis prevents tubulin degradation after completion of the cell cycle (Ducommun and Wright, Eur. J. Cell Biol., 50:48-55, 1989) but did not perturb the initiation of tubulin synthesis. The constant increase of tubulin synthesis in the presence of tubulin-sequestering drugs and the decrease of tubulin synthesis during a treatment with aphidicolin in late G2 phase suggest the existence of an autoregulatory mechanism of tubulin synthesis. Moreover, the microtubule poison methyl benzimidazole carbamate dissociated synthesis of the alpha 1-tubulin isotype from the generally strictly coordinated synthesis of all tubulin isotypes during the transient interruption of mitosis. These observations show that a microtubular poison can perturb regulation of the synthesis of specific isotubulins.