Blood Stem Cell and Cancer Research Unit, Department of Haematology, St Vincent's Hospital, Victoria Street, Darlinghurst, Australia.
BMC Med Genomics. 2011 Mar 31;4:27. doi: 10.1186/1755-8794-4-27.
Diagnostic accuracy of lymphoma, a heterogeneous cancer, is essential for patient management. Several ancillary tests including immunophenotyping, and sometimes cytogenetics and PCR are required to aid histological diagnosis. In this proof of principle study, gene expression microarray was evaluated as a single platform test in the differential diagnosis of common lymphoma subtypes and reactive lymphadenopathy (RL) in lymph node biopsies.
116 lymph node biopsies diagnosed as RL, classical Hodgkin lymphoma (cHL), diffuse large B cell lymphoma (DLBCL) or follicular lymphoma (FL) were assayed by mRNA microarray. Three supervised classification strategies (global multi-class, local binary-class and global binary-class classifications) using diagonal linear discriminant analysis was performed on training sets of array data and the classification error rates calculated by leave one out cross-validation. The independent error rate was then evaluated by testing the identified gene classifiers on an independent (test) set of array data.
The binary classifications provided prediction accuracies, between a subtype of interest and the remaining samples, of 88.5%, 82.8%, 82.8% and 80.0% for FL, cHL, DLBCL, and RL respectively. Identified gene classifiers include LIM domain only-2 (LMO2), Chemokine (C-C motif) ligand 22 (CCL22) and Cyclin-dependent kinase inhibitor-3 (CDK3) specifically for FL, cHL and DLBCL subtypes respectively.
This study highlights the ability of gene expression profiling to distinguish lymphoma from reactive conditions and classify the major subtypes of lymphoma in a diagnostic setting. A cost-effective single platform "mini-chip" assay could, in principle, be developed to aid the quick diagnosis of lymph node biopsies with the potential to incorporate other pathological entities into such an assay.
淋巴瘤是一种异质性癌症,其诊断准确性对于患者管理至关重要。为了辅助组织学诊断,通常需要进行免疫表型检测,有时还需要进行细胞遗传学和 PCR 检测。在这项原理验证研究中,我们评估了基因表达微阵列作为一种单一平台检测方法,用于鉴别淋巴结活检中的常见淋巴瘤亚型和反应性淋巴增生(RL)。
我们对 116 例诊断为 RL、经典霍奇金淋巴瘤(cHL)、弥漫性大 B 细胞淋巴瘤(DLBCL)或滤泡性淋巴瘤(FL)的淋巴结活检进行了 mRNA 微阵列分析。使用对角线线性判别分析对数组数据的训练集进行了三种有监督分类策略(全局多类、局部二进制类和全局二进制类分类),并通过留一法交叉验证计算分类错误率。然后,通过在独立(测试)数组数据集上测试鉴定的基因分类器来评估独立错误率。
二进制分类在感兴趣的亚型与其余样本之间提供了以下预测准确率:FL 为 88.5%、cHL 为 82.8%、DLBCL 为 82.8%和 RL 为 80.0%。鉴定的基因分类器包括 LIM 结构域仅 2(LMO2)、趋化因子(C-C 基序)配体 22(CCL22)和细胞周期蛋白依赖性激酶抑制剂 3(CDK3),分别特异性用于 FL、cHL 和 DLBCL 亚型。
本研究强调了基因表达谱分析区分淋巴瘤与反应性疾病以及在诊断环境中分类主要淋巴瘤亚型的能力。一种具有成本效益的单一平台“迷你芯片”检测方法,原则上可以开发出来,以帮助快速诊断淋巴结活检,并且有可能将其他病理实体纳入此类检测。