Suppr超能文献

纵向行政数据可用于检查多种合并症,只要控制了假发现。

Longitudinal administrative data can be used to examine multimorbidity, provided false discoveries are controlled for.

机构信息

Department of Statistics and Mathematical Modeling, Centre for Methodology and Information Services, National Institute for Public Health and the Environment, 3720 BA Bilthoven, The Netherlands.

出版信息

J Clin Epidemiol. 2011 Oct;64(10):1109-17. doi: 10.1016/j.jclinepi.2010.12.011. Epub 2011 Mar 31.

Abstract

OBJECTIVE

This article presents methods for using administrative data to study multimorbidity in hospitalized individuals and indicates how the findings can be used to gain a deeper understanding of hospital multimorbidity.

STUDY DESIGN AND SETTING

A Dutch nationwide hospital register (n=4,521,856) was used to calculate age- and sex-standardized observed/expected ratios of disease-pairing prevalences with corresponding confidence intervals.

RESULTS

The strongest association was found for the combination between alcoholic liver and mental disorders due to alcohol abuse (observed/expected=39.2). Septicemia was found to cluster most frequently with other diseases. The consistency of the ratios over time depended on the number of observed cases. Furthermore, the ratios also depend on the length of the time frame considered.

CONCLUSION

Using observed/expected ratios calculated from the administrative data set, we were able to (1) better quantify known morbidity pairings while also revealing hitherto unnoticed associations, (2) find out which pairings cluster most strongly, and (3) gain insight into which diseases cluster frequently with other diseases. Caveats with this method are finding spurious associations on the basis of too few observed cases and the dependency of the ratio magnitude on the length of the time frame observed.

摘要

目的

本文介绍了使用行政数据研究住院患者多种疾病的方法,并指出了如何利用这些发现来深入了解医院的多种疾病。

研究设计和设置

利用荷兰全国性医院登记处(n=4,521,856),计算出疾病配对患病率的观察/预期比及其相应的置信区间,按年龄和性别标准化。

结果

在因酗酒导致的精神障碍和酒精性肝病这一对疾病组合中,观察到的关联最强(观察/预期比为 39.2)。败血症与其他疾病的关联最为频繁。这些比值随时间的一致性取决于观察到的病例数。此外,比值还取决于所考虑的时间段的长度。

结论

使用从行政数据集计算出的观察/预期比,我们能够(1)更好地量化已知的疾病配对,同时揭示以前未被注意到的关联,(2)找出最强烈的关联组合,以及(3)深入了解哪些疾病与其他疾病经常发生关联。该方法存在一些局限性,例如,基于过少的观察病例可能会产生虚假关联,以及比值的大小取决于观察时间段的长度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验