Suppr超能文献

保守的非典型残基甘氨酸-126 赋予原肌球蛋白分子中部不稳定性。

Conserved noncanonical residue Gly-126 confers instability to the middle part of the tropomyosin molecule.

机构信息

AN Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia.

出版信息

J Biol Chem. 2011 May 6;286(18):15766-72. doi: 10.1074/jbc.M110.209353. Epub 2011 Mar 14.

Abstract

Tropomyosin (Tm) is a two-stranded α-helical coiled-coil protein with a well established role in regulation of actin cytoskeleton and muscle contraction. It is believed that many Tm functions are enabled by its flexibility whose nature has not been completely understood. We hypothesized that the well conserved non-canonical residue Gly-126 causes local destabilization of Tm. To test this, we substituted Gly-126 in skeletal muscle α-Tm either with an Ala residue, which should stabilize the Tm α-helix, or with an Arg residue, which is expected to stabilize both α-helix and coiled-coil structure of Tm. We have shown that both mutations dramatically reduce the rate of Tm proteolysis by trypsin at Asp-133. Differential scanning calorimetry was used for detailed investigation of thermal unfolding of the Tm mutants, both free in solution and bound to F-actin. It was shown that a significant part of wild type Tm unfolds in a non-cooperative manner at low temperature, and both mutations confer cooperativity to this part of the Tm molecule. The size of the flexible middle part of Tm is estimated to be 60-70 amino acid residues, about a quarter of the Tm molecule. Thus, our results show that flexibility is unevenly distributed in the Tm molecule and achieves the highest extent in its middle part. We conclude that the highly conserved Gly-126, acting in concert with the previously identified non-canonical Asp-137, destabilizes the middle part of Tm, resulting in a more flexible region that is important for Tm function.

摘要

原肌球蛋白(Tm)是一种双股α-螺旋卷曲螺旋蛋白,在调节肌动蛋白细胞骨架和肌肉收缩方面具有明确的作用。人们认为,Tm 的许多功能是通过其灵活性来实现的,但这种灵活性的本质尚未完全理解。我们假设,高度保守的非典型残基甘氨酸-126 导致 Tm 的局部失稳。为了验证这一点,我们在骨骼肌α-Tm 中用丙氨酸残基取代甘氨酸-126,丙氨酸残基应该稳定 Tm α-螺旋,或者用精氨酸残基取代甘氨酸-126,精氨酸残基预计稳定 Tm 的α-螺旋和卷曲螺旋结构。我们已经表明,这两种突变都显著降低了 Tm 在 Asp-133 处被胰蛋白酶水解的速率。差示扫描量热法用于详细研究 Tm 突变体在溶液中和与 F-肌动蛋白结合时的热解折叠。结果表明,野生型 Tm 的很大一部分在低温下以非协同方式展开,并且这两种突变都赋予 Tm 分子的这部分协同性。Tm 分子中柔性中间部分的大小估计为 60-70 个氨基酸残基,约占 Tm 分子的四分之一。因此,我们的结果表明,Tm 分子中的灵活性分布不均匀,在其中间部分达到最高程度。我们得出结论,高度保守的甘氨酸-126 与先前鉴定的非典型残基天冬氨酸-137 协同作用,使 Tm 的中间部分失稳,形成一个更灵活的区域,这对 Tm 功能很重要。

相似文献

1
Conserved noncanonical residue Gly-126 confers instability to the middle part of the tropomyosin molecule.
J Biol Chem. 2011 May 6;286(18):15766-72. doi: 10.1074/jbc.M110.209353. Epub 2011 Mar 14.
5
Stability of two beta-tropomyosin isoforms: effects of mutation Arg91Gly.
J Muscle Res Cell Motil. 2008;29(6-8):173-6. doi: 10.1007/s10974-009-9171-3. Epub 2009 Feb 12.
7
Functional role of the core gap in the middle part of tropomyosin.
FEBS J. 2018 Mar;285(5):871-886. doi: 10.1111/febs.14369. Epub 2018 Jan 16.
9
Conserved Asp-137 imparts flexibility to tropomyosin and affects function.
J Biol Chem. 2008 Mar 14;283(11):6728-34. doi: 10.1074/jbc.M707485200. Epub 2007 Dec 29.

引用本文的文献

1
The unique biology of catch muscles: insights into structure, function, and robotics innovations.
Front Bioeng Biotechnol. 2025 Apr 16;13:1478626. doi: 10.3389/fbioe.2025.1478626. eCollection 2025.
2
Functional and Structural Properties of Cytoplasmic Tropomyosin Isoforms Tpm1.8 and Tpm1.9.
Int J Mol Sci. 2024 Jun 22;25(13):6873. doi: 10.3390/ijms25136873.
4
Impact of A134 and E218 Amino Acid Residues of Tropomyosin on Its Flexibility and Function.
Int J Mol Sci. 2020 Nov 18;21(22):8720. doi: 10.3390/ijms21228720.
5
Functional outcomes of structural peculiarities of striated muscle tropomyosin.
J Muscle Res Cell Motil. 2020 Mar;41(1):55-70. doi: 10.1007/s10974-019-09552-8. Epub 2019 Sep 18.
6
Structural and Dynamic Properties of Allergen and Non-Allergen Forms of Tropomyosin.
Structure. 2018 Jul 3;26(7):997-1006.e5. doi: 10.1016/j.str.2018.05.002. Epub 2018 Jun 7.
7
The structural basis of alpha-tropomyosin linked (Asp230Asn) familial dilated cardiomyopathy.
J Mol Cell Cardiol. 2017 Jul;108:127-137. doi: 10.1016/j.yjmcc.2017.06.001. Epub 2017 Jun 7.
8
Cooperativity of myosin interaction with thin filaments is enhanced by stabilizing substitutions in tropomyosin.
J Muscle Res Cell Motil. 2017 Apr;38(2):183-191. doi: 10.1007/s10974-017-9472-x. Epub 2017 May 24.
9
The Relaxation Properties of Myofibrils Are Compromised by Amino Acids that Stabilize α-Tropomyosin.
Biophys J. 2017 Jan 24;112(2):376-387. doi: 10.1016/j.bpj.2016.12.013.
10
Stabilizing the central part of tropomyosin increases the bending stiffness of the thin filament.
Biophys J. 2015 Jul 21;109(2):373-9. doi: 10.1016/j.bpj.2015.06.006.

本文引用的文献

1
What makes tropomyosin an actin binding protein? A perspective.
J Struct Biol. 2010 May;170(2):319-24. doi: 10.1016/j.jsb.2009.12.013. Epub 2009 Dec 29.
2
The shape and flexibility of tropomyosin coiled coils: implications for actin filament assembly and regulation.
J Mol Biol. 2010 Jan 15;395(2):327-39. doi: 10.1016/j.jmb.2009.10.060. Epub 2009 Oct 31.
3
Thermally induced structural changes of intrinsically disordered small heat shock protein Hsp22.
Biophys Chem. 2009 Dec;145(2-3):79-85. doi: 10.1016/j.bpc.2009.09.003. Epub 2009 Sep 12.
5
Stability of two beta-tropomyosin isoforms: effects of mutation Arg91Gly.
J Muscle Res Cell Motil. 2008;29(6-8):173-6. doi: 10.1007/s10974-009-9171-3. Epub 2009 Feb 12.
6
Gestalt-binding of tropomyosin to actin filaments.
J Muscle Res Cell Motil. 2008;29(6-8):213-9. doi: 10.1007/s10974-008-9157-6. Epub 2008 Dec 31.
7
Apo-parvalbumin as an intrinsically disordered protein.
Proteins. 2008 Aug 15;72(3):822-36. doi: 10.1002/prot.21974.
8
Conserved Asp-137 imparts flexibility to tropomyosin and affects function.
J Biol Chem. 2008 Mar 14;283(11):6728-34. doi: 10.1074/jbc.M707485200. Epub 2007 Dec 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验