Suppr超能文献

肌球蛋白结合蛋白肌球蛋白结合蛋白有什么作用?透视。

What makes tropomyosin an actin binding protein? A perspective.

机构信息

Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA.

出版信息

J Struct Biol. 2010 May;170(2):319-24. doi: 10.1016/j.jsb.2009.12.013. Epub 2009 Dec 29.

Abstract

Tropomyosin is a two-chained alpha-helical coiled coil that binds along the length of the actin filament and regulates its function. The paper addresses the question of how a "simple" coiled-coil sequence encodes the information for binding and regulating the actin filament, its universal target. Determination of the tropomyosin sequence confirmed Crick's predicted heptapeptide repeat of hydrophobic interface residues and revealed additional features that have been shown to be important for its function: a 7-fold periodicity predicted to correspond to actin binding sites and interruptions of the canonical interface with destabilizing residues, such as Ala. Evidence from published work is summarized, leading to the proposal of a paradigm that binding of tropomyosin to the actin filament requires local instability as well as regions of flexibility. The flexibility derives from bends and local unfolding at regions with a destabilized coiled-coil interface, as well as from the dynamic end-to-end complex. The features are required for tropomyosin to assume the form of the helical actin filament, and to bind to actin monomers along its length. The requirement of instability/flexibility for binding may be generalized to the binding of other coiled coils to their targets.

摘要

原肌球蛋白是一种由两条链组成的α-螺旋卷曲螺旋,沿着肌动蛋白丝的长度结合并调节其功能。本文探讨了一个“简单”的卷曲螺旋序列如何编码与肌动蛋白丝结合和调节的信息,肌动蛋白丝是其普遍的靶标。原肌球蛋白序列的确定证实了克里克预测的疏水面接口残基的七肽重复,并揭示了其他被证明对其功能很重要的特征:7 倍周期性预测与肌动蛋白结合位点相对应,以及与不稳定残基(如丙氨酸)的经典接口中断。总结了已发表工作的证据,提出了一个范例,即原肌球蛋白与肌动蛋白丝的结合需要局部不稳定性以及灵活性区域。这种灵活性源于具有不稳定卷曲螺旋界面的区域的弯曲和局部展开,以及动态的末端到末端的复合物。这些特征是原肌球蛋白形成螺旋肌动蛋白丝并沿着其长度与肌动蛋白单体结合所必需的。对于结合来说,不稳定性/灵活性的要求可能被推广到其他卷曲螺旋与其靶标的结合。

相似文献

1
What makes tropomyosin an actin binding protein? A perspective.
J Struct Biol. 2010 May;170(2):319-24. doi: 10.1016/j.jsb.2009.12.013. Epub 2009 Dec 29.
4
The structural dynamics of α-tropomyosin on F-actin shape the overlap complex between adjacent tropomyosin molecules.
Arch Biochem Biophys. 2014 Jun 15;552-553:68-73. doi: 10.1016/j.abb.2013.09.011. Epub 2013 Sep 23.
5
Periodicities designed in the tropomyosin sequence and structure define its functions.
Bioarchitecture. 2013 May-Jun;3(3):51-6. doi: 10.4161/bioa.25616. Epub 2013 Jul 8.
6
A peek into tropomyosin binding and unfolding on the actin filament.
PLoS One. 2009 Jul 24;4(7):e6336. doi: 10.1371/journal.pone.0006336.
7
Evolutionarily conserved surface residues constitute actin binding sites of tropomyosin.
Proc Natl Acad Sci U S A. 2011 Jun 21;108(25):10150-5. doi: 10.1073/pnas.1101221108. Epub 2011 Jun 3.
8
Tropomyosin's periods are quasi-equivalent for actin binding but have specific regulatory functions.
Biochemistry. 2007 Dec 25;46(51):14917-27. doi: 10.1021/bi701570b. Epub 2007 Dec 4.
10
The shape and flexibility of tropomyosin coiled coils: implications for actin filament assembly and regulation.
J Mol Biol. 2010 Jan 15;395(2):327-39. doi: 10.1016/j.jmb.2009.10.060. Epub 2009 Oct 31.

引用本文的文献

1
Thin filament cardiomyopathies: A review of genetics, disease mechanisms, and emerging therapeutics.
Front Cardiovasc Med. 2022 Sep 7;9:972301. doi: 10.3389/fcvm.2022.972301. eCollection 2022.
2
Mutations Q93H and E97K in Disrupt Ca-Dependent Regulation of Actin Filaments.
Int J Mol Sci. 2021 Apr 14;22(8):4036. doi: 10.3390/ijms22084036.
3
Impact of A134 and E218 Amino Acid Residues of Tropomyosin on Its Flexibility and Function.
Int J Mol Sci. 2020 Nov 18;21(22):8720. doi: 10.3390/ijms21228720.
4
Regulation of Actin Filament Length by Muscle Isoforms of Tropomyosin and Cofilin.
Int J Mol Sci. 2020 Jun 16;21(12):4285. doi: 10.3390/ijms21124285.
5
Thin filament dysfunctions caused by mutations in tropomyosin Tpm3.12 and Tpm1.1.
J Muscle Res Cell Motil. 2020 Mar;41(1):39-53. doi: 10.1007/s10974-019-09532-y. Epub 2019 Jul 3.
6
The Effect of Tropomyosin Mutations on Actin-Tropomyosin Binding: In Search of Lost Time.
Biophys J. 2019 Jun 18;116(12):2275-2284. doi: 10.1016/j.bpj.2019.05.009. Epub 2019 May 13.
8
Investigating the effects of tropomyosin mutations on its flexibility and interactions with filamentous actin using molecular dynamics simulation.
J Muscle Res Cell Motil. 2016 Oct;37(4-5):131-147. doi: 10.1007/s10974-016-9447-3. Epub 2016 Jul 4.
9
Mechanistic heterogeneity in contractile properties of α-tropomyosin (TPM1) mutants associated with inherited cardiomyopathies.
J Biol Chem. 2015 Mar 13;290(11):7003-15. doi: 10.1074/jbc.M114.596676. Epub 2014 Dec 29.

本文引用的文献

2
The shape and flexibility of tropomyosin coiled coils: implications for actin filament assembly and regulation.
J Mol Biol. 2010 Jan 15;395(2):327-39. doi: 10.1016/j.jmb.2009.10.060. Epub 2009 Oct 31.
3
A peek into tropomyosin binding and unfolding on the actin filament.
PLoS One. 2009 Jul 24;4(7):e6336. doi: 10.1371/journal.pone.0006336.
5
Close encounters of the third kind: disordered domains and the interactions of proteins.
Bioessays. 2009 Mar;31(3):328-35. doi: 10.1002/bies.200800151.
6
Tropomyosin and the steric mechanism of muscle regulation.
Adv Exp Med Biol. 2008;644:95-109. doi: 10.1007/978-0-387-85766-4_8.
7
Tropomyosin: function follows structure.
Adv Exp Med Biol. 2008;644:60-72. doi: 10.1007/978-0-387-85766-4_5.
9
Gestalt-binding of tropomyosin to actin filaments.
J Muscle Res Cell Motil. 2008;29(6-8):213-9. doi: 10.1007/s10974-008-9157-6. Epub 2008 Dec 31.
10
Structural basis for tropomyosin overlap in thin (actin) filaments and the generation of a molecular swivel by troponin-T.
Proc Natl Acad Sci U S A. 2008 May 20;105(20):7200-5. doi: 10.1073/pnas.0801950105. Epub 2008 May 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验