Department of Pharmacology, Boston University School of Medicine, Boston, Massachusetts 02118-2526, USA.
J Biol Chem. 2011 May 6;286(18):16140-9. doi: 10.1074/jbc.M111.234005. Epub 2011 Mar 16.
Mutations in leucine-rich repeat kinase 2 (LRRK2) are currently the most common genetic cause of familial late-onset Parkinson disease, which is clinically indistinguishable from idiopathic disease. The most common pathological mutation in LRRK2, G2019S LRRK2, is known to cause neurite retraction. However, molecular mechanisms underlying regulation of neurite length by LRRK2 are unknown. Here, we demonstrate a novel interaction between LRRK2 and the Rho GTPase, Rac1, which plays a critical role in actin cytoskeleton remodeling necessary for the maintenance of neurite morphology. LRRK2 binds strongly to endogenous or expressed Rac1, while showing weak binding to Cdc42 and no binding to RhoA. Co-expression with LRRK2 increases Rac1 activity, as shown by increased binding to the p21-activated kinase, which modulates actin cytoskeletal dynamics. LRRK2 constructs carrying mutations that inactivate the kinase or GTPase activities do not activate Rac1. Interestingly, LRRK2 does not increase levels of membrane-bound Rac1 but dramatically changes the cellular localization of Rac1, causing polarization, which is augmented further when LRRK2 is co-expressed with constitutively active Rac1. Four different disease-related mutations in LRRK2 altered binding to Rac1, with the G2019S and R1441C LRRK2 mutations attenuating Rac1 binding and the Y1699C and I2020T LRRK2 mutations increasing binding. Co-expressing Rac1 in SH-SY5Y cells rescues the G2019S mutant phenotype of neurite retraction. We hypothesize that pathological mutations in LRRK2 attenuates activation of Rac1, causing disassembly of actin filaments, leading to neurite retraction. The interactions between LRRK2 and Rho GTPases provide a novel pathway through which LRRK2 might modulate cellular dynamics and contribute to the pathophysiology of Parkinson disease.
LRRK2 中的突变是目前家族性晚发性帕金森病最常见的遗传原因,这种疾病在临床上与特发性疾病无法区分。LRRK2 中最常见的病理性突变 G2019S LRRK2 已知会导致轴突回缩。然而,LRRK2 调节轴突长度的分子机制尚不清楚。在这里,我们证明了 LRRK2 与 Rho GTPase Rac1 之间存在一种新的相互作用,Rac1 在维持轴突形态所需的肌动蛋白细胞骨架重塑中起着关键作用。LRRK2 强烈结合内源性或表达的 Rac1,而对 Cdc42 的结合较弱,对 RhoA 则没有结合。与 LRRK2 共表达会增加 Rac1 的活性,这表现为与调节肌动蛋白细胞骨架动力学的 PAK 的结合增加。携带失活激酶或 GTPase 活性的 LRRK2 突变的构建体不会激活 Rac1。有趣的是,LRRK2 不会增加膜结合 Rac1 的水平,但会显著改变 Rac1 的细胞定位,导致极化,当 LRRK2 与组成性激活的 Rac1 共表达时,极化进一步增强。LRRK2 的四种不同疾病相关突变改变了与 Rac1 的结合,G2019S 和 R1441C LRRK2 突变削弱了 Rac1 的结合,而 Y1699C 和 I2020T LRRK2 突变则增加了结合。在 SH-SY5Y 细胞中共同表达 Rac1 可挽救 G2019S 突变体的轴突回缩表型。我们假设 LRRK2 的病理性突变削弱了 Rac1 的激活,导致肌动蛋白丝的解体,从而导致轴突回缩。LRRK2 与 Rho GTPases 之间的相互作用提供了一个新的途径,通过该途径,LRRK2 可能调节细胞动力学并导致帕金森病的病理生理学。