Suppr超能文献

I 类疏水蛋白向气-水界面的募集引发了功能淀粉样蛋白形成的多步过程。

Recruitment of class I hydrophobins to the air:water interface initiates a multi-step process of functional amyloid formation.

机构信息

School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia.

出版信息

J Biol Chem. 2011 May 6;286(18):15955-63. doi: 10.1074/jbc.M110.214197. Epub 2011 Mar 18.

Abstract

Class I fungal hydrophobins form amphipathic monolayers composed of amyloid rodlets. This is a remarkable case of functional amyloid formation in that a hydrophobic:hydrophilic interface is required to trigger the self-assembly of the proteins. The mechanism of rodlet formation and the role of the interface in this process have not been well understood. Here, we have studied the effect of a range of additives, including ionic liquids, alcohols, and detergents, on rodlet formation by two class I hydrophobins, EAS and DewA. Although the conformation of the hydrophobins in these different solutions is not altered, we observe that the rate of rodlet formation is slowed as the surface tension of the solution is decreased, regardless of the nature of the additive. These results suggest that interface properties are of critical importance for the recruitment, alignment, and structural rearrangement of the amphipathic hydrophobin monomers. This work gives insight into the forces that drive macromolecular assembly of this unique family of proteins and allows us to propose a three-stage model for the interface-driven formation of rodlets.

摘要

I 类真菌疏水性蛋白形成由淀粉样纤维构成的两亲性单层。这是功能型淀粉样纤维形成的一个显著例子,因为需要疏水性-亲水性界面来触发蛋白质的自组装。纤维形成的机制以及界面在该过程中的作用尚未得到很好的理解。在这里,我们研究了一系列添加剂(包括离子液体、醇类和清洁剂)对两种 I 类疏水性蛋白 EAS 和 DewA 纤维形成的影响。尽管这些不同溶液中的疏水性蛋白构象没有改变,但我们观察到,无论添加剂的性质如何,随着溶液表面张力的降低,纤维形成的速度都会减慢。这些结果表明,界面特性对于两亲性疏水性蛋白单体的募集、排列和结构重排至关重要。这项工作深入了解了驱动这一独特蛋白家族大分子组装的力,并使我们能够提出一个三阶段模型来解释界面驱动纤维形成的过程。

相似文献

1
Recruitment of class I hydrophobins to the air:water interface initiates a multi-step process of functional amyloid formation.
J Biol Chem. 2011 May 6;286(18):15955-63. doi: 10.1074/jbc.M110.214197. Epub 2011 Mar 18.
2
Structural basis for rodlet assembly in fungal hydrophobins.
Proc Natl Acad Sci U S A. 2006 Mar 7;103(10):3621-6. doi: 10.1073/pnas.0505704103. Epub 2006 Feb 28.
3
The Cys3-Cys4 loop of the hydrophobin EAS is not required for rodlet formation and surface activity.
J Mol Biol. 2008 Oct 10;382(3):708-20. doi: 10.1016/j.jmb.2008.07.034. Epub 2008 Jul 22.
4
Analysis of the structure and conformational states of DewA gives insight into the assembly of the fungal hydrophobins.
J Mol Biol. 2013 Jan 23;425(2):244-56. doi: 10.1016/j.jmb.2012.10.021. Epub 2012 Nov 5.
6
Formation of Amphipathic Amyloid Monolayers from Fungal Hydrophobin Proteins.
Methods Mol Biol. 2020;2073:55-72. doi: 10.1007/978-1-4939-9869-2_4.
7
Self-assembly of functional, amphipathic amyloid monolayers by the fungal hydrophobin EAS.
Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):E804-11. doi: 10.1073/pnas.1114052109. Epub 2012 Jan 23.
8
Investigation of the role hydrophobin monomer loops using hybrid models via molecular dynamics simulation.
Colloids Surf B Biointerfaces. 2019 Jan 1;173:128-138. doi: 10.1016/j.colsurfb.2018.09.062. Epub 2018 Sep 26.
9
Probing Structural Changes during Self-assembly of Surface-Active Hydrophobin Proteins that Form Functional Amyloids in Fungi.
J Mol Biol. 2018 Oct 12;430(20):3784-3801. doi: 10.1016/j.jmb.2018.07.025. Epub 2018 Aug 7.
10
Excretory overexpression of hydrophobins as multifunctional biosurfactants in E. coli.
Int J Biol Macromol. 2020 Dec 15;165(Pt A):1296-1302. doi: 10.1016/j.ijbiomac.2020.09.206. Epub 2020 Sep 28.

引用本文的文献

1
What makes functional amyloids work?
Crit Rev Biochem Mol Biol. 2022 Aug;57(4):399-411. doi: 10.1080/10409238.2022.2113030. Epub 2022 Aug 23.
2
Hydrophobins: Physicochemical Properties, Biochemical Properties, and Functions in Solid Polymer Degradation.
Microorganisms. 2022 Jul 25;10(8):1498. doi: 10.3390/microorganisms10081498.
3
Adsorption Kinetics and Self-Assembled Structures of Aspergillus oryzae Hydrophobin RolA on Hydrophobic and Charged Solid Surfaces.
Appl Environ Microbiol. 2022 Mar 22;88(6):e0208721. doi: 10.1128/AEM.02087-21. Epub 2022 Feb 2.
5
Assembly and disassembly of conidial rodlets.
Cell Surf. 2019 Mar 6;5:100023. doi: 10.1016/j.tcsw.2019.100023. eCollection 2019 Dec.
6
Microbial functional amyloids serve diverse purposes for structure, adhesion and defence.
Biophys Rev. 2019 Jun;11(3):287-302. doi: 10.1007/s12551-019-00526-1. Epub 2019 May 2.
7
9
10
Immobilization of LccC Laccase from Aspergillus nidulans on Hard Surfaces via Fungal Hydrophobins.
Appl Environ Microbiol. 2016 Oct 14;82(21):6395-6402. doi: 10.1128/AEM.01413-16. Print 2016 Nov 1.

本文引用的文献

1
Noncovalently functionalized multi-wall carbon nanotubes in aqueous solution using the hydrophobin HFBI and their electroanalytical application.
Biosens Bioelectron. 2010 Nov 15;26(3):1104-8. doi: 10.1016/j.bios.2010.08.024. Epub 2010 Aug 20.
2
Influence of the hydrophobic interface and transition metal ions on the conformation of amyloidogenic model peptides.
Biophys Chem. 2010 Aug;150(1-3):64-72. doi: 10.1016/j.bpc.2010.02.014. Epub 2010 Mar 1.
4
Multifunctional hydrophobin: toward functional coatings for drug nanoparticles.
ACS Nano. 2010 Mar 23;4(3):1750-8. doi: 10.1021/nn9017558.
5
Critical role of interfaces and agitation on the nucleation of Abeta amyloid fibrils at low concentrations of Abeta monomers.
Biochim Biophys Acta. 2010 Apr;1804(4):986-95. doi: 10.1016/j.bbapap.2010.01.012. Epub 2010 Jan 25.
6
Hydrophobin fusions for high-level transient protein expression and purification in Nicotiana benthamiana.
Plant Physiol. 2010 Feb;152(2):622-33. doi: 10.1104/pp.109.149021. Epub 2009 Dec 11.
7
Use of hydrophobins in formulation of water insoluble drugs for oral administration.
Colloids Surf B Biointerfaces. 2010 Feb 1;75(2):526-31. doi: 10.1016/j.colsurfb.2009.09.030. Epub 2009 Sep 26.
8
Competing discrete interfacial effects are critical for amyloidogenesis.
FASEB J. 2010 Jan;24(1):309-17. doi: 10.1096/fj.09-137653. Epub 2009 Sep 9.
9
Patterning of neural stem cells on poly(lactic-co-glycolic acid) film modified by hydrophobin.
Colloids Surf B Biointerfaces. 2009 Nov 1;74(1):370-4. doi: 10.1016/j.colsurfb.2009.07.039. Epub 2009 Aug 7.
10
Surface hydrophobin prevents immune recognition of airborne fungal spores.
Nature. 2009 Aug 27;460(7259):1117-21. doi: 10.1038/nature08264.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验