Institut für Physikalische Chemie, Karlsruher Institut für Technologie (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany.
J Chem Phys. 2011 Mar 28;134(12):124308. doi: 10.1063/1.3571596.
We present results of molecular electronic structure treatments of multireference configuration interaction (MRCI) type for clusters Al(n) and Sn(n) in the range up to n = 4, and of coupled cluster singles and doubles with perturbative triples corrections (CCSD(T)) type in the range up to n = 10. Basis sets of quadruple zeta size are employed, computed energy differences, such as cohesive energies, E(coh), or dissociation energies for the removal of a single atom, D(e), differ from the complete basis set limit by only a few 0.01 eV. MRCI and CCSD(T) results are then compared to those obtained from density functional theory (DFT) treatments, which show that all computational procedures agree with the general features of D(e) and E(coh). The best agreement of DFT with CCSD(T) is found for the meta-GGA (generalized gradient approximation) TPSS (Tao, Perdew, Staroverov, Scuseria) for which D(e) differs from CCSD(T) by at most 0.15 eV for Al(n) and 0.21 eV for Sn(n). The GGA PBE (Perdew, Burke, Ernzerhof) is slightly poorer with maximum deviations of 0.23 and 0.24 eV, whereas hybrid functionals are not competitive with GGA and meta-GGA functionals. A general conclusion is that errors of D(e) and/or energy differences of isomers computed with DFT procedures may easily reach 0.2 eV and errors for cohesive energies E(coh) 0.1 eV.
我们呈现了对范围高达 n = 4 的 Al(n) 和 Sn(n) 团簇的多参考组态相互作用 (MRCI) 类型和范围高达 n = 10 的耦合簇单双加微扰三的类型的分子电子结构处理的结果。采用了四重 zeta 大小的基组,计算出的能量差,如内聚能 E(coh)或单个原子去除的离解能 D(e),与完全基组极限的差异仅为几个 0.01 eV。然后将 MRCI 和 CCSD(T)的结果与从密度泛函理论 (DFT)处理中得到的结果进行比较,表明所有的计算程序都与 D(e)和 E(coh)的一般特征一致。DFT 与 CCSD(T)的最佳一致性是在 meta-GGA (广义梯度近似) TPSS (Tao、Perdew、Staroverov、Scuseria)中发现的,对于 Al(n)和 Sn(n),D(e)与 CCSD(T)的差异最多分别为 0.15 eV 和 0.21 eV。GGA PBE (Perdew、Burke、Ernzerhof)稍差,最大偏差为 0.23 和 0.24 eV,而混合泛函与 GGA 和 meta-GGA 泛函相比没有竞争力。一个总的结论是,用 DFT 程序计算的 D(e)和/或异构体的能量差的误差很容易达到 0.2 eV,而内聚能 E(coh)的误差为 0.1 eV。