Schulich Faculty of Chemistry, Technion, Haifa 32000, Israel.
J Chem Phys. 2011 Mar 28;134(12):124701. doi: 10.1063/1.3561317.
Impact of fullerene ions (C(60)(-)) on a metallic surface at keV kinetic energies and under single collision conditions is used as an efficient way for generating gas phase carbide cluster ions of gold and silver, which were rarely explored before. Positively and negatively charged cluster ions, Au(n)C(m)(+) (n = 1-5, 1 ≤ m ≤ 12), Ag(n)C(m)(+) (n = 1-7, 1 ≤ m ≤ 7), Au(n)C(m)(-) (n = 1-5, 1 ≤ m ≤ 10), and Ag(n)C(m)(-) (n = 1-3, 1 ≤ m ≤ 6), were observed. The Au(3)C(2)(+) and Ag(3)C(2)(+) clusters are the most abundant cations in the corresponding mass spectra. Pronounced odd/even intensity alternations were observed for nearly all Au(n)C(m)(+/-) and Ag(n)C(m)(+/-) series. The time dependence of signal intensity for selected positive ions was measured over a broad range of C(60)(-) impact energies and fluxes. A few orders of magnitude immediate signal jump instantaneous with the C(60)(-) ion beam opening was observed, followed by a nearly constant plateau. It is concluded that the overall process of the fullerene collision and formation∕ejection of the carbidic species can be described as a single impact event where the shattering of the incoming C(60)(-) ion into small C(m) fragments occurs nearly instantaneously with the (multiple) pickup of metal atoms and resulting emission of the carbide clusters. Density functional theory calculations showed that the most stable configuration of the Au(n)C(m)(+) (n = 1, 2) clusters is a linear carbon chain with one or two terminal gold atoms correspondingly (except for a bent configuration of Au(2)C(+)). The calculated AuC(m) adiabatic ionization energies showed parity alternations in agreement with the measured intensity alternations of the corresponding ions. The Au(3)C(2)(+) ion possesses a basic Au(2)C(2) acetylide structure with a π-coordinated third gold atom, forming a π-complex structure of the type Au(π-Au(2)C(2)). The calculation shows meaningful contributions of direct gold-gold bonding to the overall stability of the Au(3)C(2)(+) complex.
富勒烯离子(C(60)(-)在 keV 动能和单次碰撞条件下对金属表面的影响被用作生成金和银的气相碳化物团簇离子的有效方法,这在以前很少被探索过。我们观察到带正电荷和带负电荷的团簇离子,Au(n)C(m)(+)(n = 1-5,1 ≤ m ≤ 12),Ag(n)C(m)(+)(n = 1-7,1 ≤ m ≤ 7),Au(n)C(m)(-)(n = 1-5,1 ≤ m ≤ 10)和 Ag(n)C(m)(-)(n = 1-3,1 ≤ m ≤ 6)。在相应的质谱中,最丰富的阳离子是 Au(3)C(2)(+)和 Ag(3)C(2)(+) 团簇。几乎所有的 Au(n)C(m)(+/-)和 Ag(n)C(m)(+/-)系列都观察到了奇偶强度交替现象。我们测量了选定的正离子在宽 C(60)(-)冲击能和通量范围内的信号强度随时间的变化。在 C(60)(-)离子束打开的瞬间,我们观察到了几个数量级的即时信号跳跃,随后是几乎恒定的平台。我们得出的结论是,富勒烯碰撞和形成/喷射碳化物种的整个过程可以描述为一个单一的冲击事件,其中进入的 C(60)(-)离子碎裂成小的 C(m)碎片几乎与(多个)金属原子的拾取和由此产生的碳化物团簇的发射同时发生。密度泛函理论计算表明,Au(n)C(m)(+)(n = 1,2)团簇的最稳定构型是具有一个或两个相应末端金原子的线性碳链(除了 Au(2)C(+)的弯曲构型)。计算得出的 AuC(m)绝热电离能与相应离子的强度交替一致,表现出奇偶交替。Au(3)C(2)(+)离子具有基本的 Au(2)C(2)乙酰化物结构,带有一个π配位的第三个金原子,形成了 Au(π-Au(2)C(2))的π-配合物结构。计算表明,直接的金-金键合对 Au(3)C(2)(+)配合物的整体稳定性有重要贡献。