Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza, Spain.
Chaos. 2011 Mar;21(1):016105. doi: 10.1063/1.3532801.
Previous studies about synchronization of Kuramoto oscillators in complex networks have shown how local patterns of synchronization emerge differently in homogeneous and heterogeneous topologies. The main difference between the paths to synchronization in both topologies is rooted in the growth of the largest connected component of synchronized nodes when increasing the coupling between the oscillators. Nevertheless, a recent study focusing on this same phenomenon has claimed the contrary, stating that the statistical distribution of synchronized clusters for both types of networks is similar. Here we provide extensive numerical evidences that confirm the original claims, namely, that the microscopic and mesoscopic dynamics of the synchronized patterns indeed follow different routes.
先前关于复杂网络中 Kuramoto 振子同步的研究表明,同构和异构拓扑中同步模式的局部出现方式有何不同。两种拓扑结构中同步路径的主要区别在于,当增加振荡器之间的耦合时,同步节点的最大连通分量的增长情况不同。然而,最近一项关注同一现象的研究却提出了相反的观点,即两种网络类型的同步簇的统计分布相似。在这里,我们提供了广泛的数值证据来证实最初的观点,即同步模式的微观和介观动力学确实遵循不同的路径。