School of Physics and Astronomy, Tel Aviv University, 69978 Tel Aviv, Israel.
Chaos. 2011 Mar;21(1):016109. doi: 10.1063/1.3543800.
Much effort has been devoted to assess the importance of nodes in complex biological networks (such as gene transcriptional regulatory networks, protein interaction networks, and neural networks). Examples of commonly used measures of node importance include node degree, node centrality, and node vulnerability score (the effect of the node deletion on the network efficiency). Here, we present a new approach to compute and investigate the mutual dependencies between network nodes from the matrices of node-node correlations. To this end, we first define the dependency of node i on node j (or the influence of node j on node i), D(i, j) as the average over all nodes k of the difference between the i - k correlation and the partial correlations between these nodes with respect to node j. Note that the dependencies, D(i, j) define a directed weighted matrix, since, in general, D(i, j) differs from D( j, i). For this reason, many of the commonly used measures of node importance, such as node centrality, cannot be used. Hence, to assess the node importance of the dependency networks, we define the system level influence (SLI) of antigen j, SLI( j) as the sum of the influence of j on all other antigens i. Next, we define the system level influence or the influence score of antigen j, SLI( j) as the sum of D(i, j) over all nodes i. We introduce the new approach and demonstrate that it can unveil important biological information in the context of the immune system. More specifically, we investigated antigen dependency networks computed from antigen microarray data of autoantibody reactivity of IgM and IgG isotypes present in the sera of ten mothers and their newborns. We found that the analysis was able to unveil that there is only a subset of antigens that have high influence scores (SLI) common both to the mothers and newborns. Networks comparison in terms of modularity (using the Newman's algorithm) and of topology (measured by the divergence rate) revealed that, at birth, the IgG networks exhibit a more profound global reorganization while the IgM networks exhibit a more profound local reorganization. During immune system development, the modularity of the IgG network increases and becomes comparable to that of the IgM networks at adulthood. We also found the existence of several conserved IgG and IgM network motifs between the maternal and newborns networks, which might retain network information as our immune system develops. If correct, these findings provide a convincing demonstration of the effectiveness of the new approach to unveil most significant biological information. Whereas we have introduced the new approach within the context of the immune system, it is expected to be effective in the studies of other complex biological social, financial, and manmade networks.
人们投入了大量精力来评估复杂生物网络(如基因转录调控网络、蛋白质相互作用网络和神经网络)中节点的重要性。常用的节点重要性度量包括节点度、节点中心性和节点脆弱性得分(节点删除对网络效率的影响)。在这里,我们提出了一种从节点-节点相关矩阵中计算和研究网络节点之间相互依赖性的新方法。为此,我们首先定义节点 i 对节点 j 的依赖性(或节点 j 对节点 i 的影响),D(i, j)为所有节点 k 上节点 i-k 相关性与节点 j 相对于这些节点的部分相关性之间的差异的平均值。请注意,依赖性 D(i, j)定义了一个有向加权矩阵,因为一般来说,D(i, j)与 D( j, i)不同。由于这个原因,许多常用的节点重要性度量,如节点中心性,都不能使用。因此,为了评估依赖网络的节点重要性,我们将抗原 j 的系统水平影响(SLI)定义为 j 对所有其他抗原 i 的影响之和。接下来,我们将抗原 j 的系统水平影响或影响分数 SLI 定义为所有节点 i 上的 D(i, j)之和。我们引入了新方法,并证明它可以揭示免疫系统背景下的重要生物学信息。具体来说,我们从 10 位母亲及其新生儿血清中 IgM 和 IgG 同种型自身抗体反应的抗原微阵列数据中计算了抗原依赖性网络。我们发现,该分析能够揭示出只有一组抗原具有高影响分数(SLI),并且在母亲和新生儿中都存在。使用 Newman 算法进行模块化(modularity)和使用发散率测量拓扑(topology)的网络比较表明,在出生时,IgG 网络表现出更深刻的全局重组,而 IgM 网络表现出更深刻的局部重组。在免疫系统发育过程中,IgG 网络的模块性增加,并在成年时变得与 IgM 网络相当。我们还发现了母体和新生儿网络之间存在一些保守的 IgG 和 IgM 网络基序,这些基序可能在我们的免疫系统发育过程中保留了网络信息。如果正确,这些发现提供了一个令人信服的证据,证明了该新方法揭示最显著生物学信息的有效性。虽然我们已经在免疫系统的背景下引入了新方法,但预计它在其他复杂的生物社会、金融和人造网络的研究中也将是有效的。