The University of Queensland, Delivery of Drugs and Genes Group (D2G2), Australian Institute for Bioengineering and Nanotechnology, Brisbane, QLD 4072, Australia.
Biomaterials. 2011 Jul;32(20):4670-81. doi: 10.1016/j.biomaterials.2011.03.012. Epub 2011 Mar 31.
Micro-devices using mechanical means to target skin for improved drug and vaccine delivery have great promise for improved clinical healthcare. Fully realizing this promise requires a greater understanding of key micro-biomechanical properties for each of the different skin layers - that are both the mechanical barriers and biological targets of these devices. Here, we performed atomic force microscopy indentation on a micro-nano scale to quantify separately, in fresh mouse skin, the viscous and elastic behaviour of the stratum corneum, viable epidermis and dermis. By accessing each layer directly, we examined the response to nanoindentation at sub-cellular and bulk-cellular scale. We found that the dermis showed greatest mechanical stiffness (elastic moduli of 7.33-13.48 MPa for 6.62 μm and 1.90 μm diameter spherical probes respectively). In comparison, the stratum corneum and viable epidermis were weaker at 0.75-1.62 MPa and 0.49-1.51 MPa respectively (again with the lower values resulting from indentations with the large probe 6.62 μm). The living cell layer of the epidermis (viable epidermis) showed greatest viscoelasticity - almost fully relaxing from shallow indentation - whilst the other layers reached a plateau after relaxing by around 40%. With small scale (sub-micron) AFM indentation, we directly determined the effects of different layer constituents - in particular, the dermis showed that some indents contacted collagen fibrils and others contacted ground substance/cellular areas. This work has far reaching implications for the design of micro-devices using mechanical means to deliver drugs or vaccines into the skin; providing key characterized mechanical property values for each constituent of the target delivery material.
利用机械手段靶向皮肤以改善药物和疫苗递送的微设备为改善临床医疗保健带来了巨大的希望。要充分实现这一承诺,需要更深入地了解每个不同皮肤层的关键微观机械特性——这些特性既是这些设备的机械屏障,也是生物靶点。在这里,我们使用原子力显微镜在微纳米尺度上进行压痕,分别量化新鲜小鼠皮肤的角质层、有活力的表皮和真皮的粘性和弹性行为。通过直接进入每个层,我们检查了在亚细胞和全细胞尺度上对纳米压痕的响应。我们发现真皮具有最大的机械刚度(6.62μm 和 1.90μm 直径球形探针的弹性模量分别为 7.33-13.48MPa)。相比之下,角质层和有活力的表皮较弱,分别为 0.75-1.62MPa 和 0.49-1.51MPa(再次是较大探针 6.62μm 压痕的低值)。表皮的活细胞层(有活力的表皮)表现出最大的粘弹性——几乎完全从浅层压痕中松弛——而其他层在松弛约 40%后达到平台。通过小尺度(亚微米)AFM 压痕,我们直接确定了不同层成分的影响——特别是真皮表明,一些压痕接触到胶原纤维,而另一些则接触到基质/细胞区域。这项工作对使用机械手段将药物或疫苗递送到皮肤的微设备设计具有深远的意义;为目标输送材料的每个成分提供关键的特征机械性能值。