Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
J Mol Cell Cardiol. 2011 Jul;51(1):67-71. doi: 10.1016/j.yjmcc.2011.03.013. Epub 2011 Apr 1.
Designer natriuretic peptides (NPs) represent an active area of drug development. In canine and human studies, the designer natriuretic peptide CD-NP demonstrated more desirable therapeutic potential than recombinant B-type NP (BNP), which is known as nesiritide and is approved for treatment of acute decompensated heart failure. However, why CD-NP is more effective than BNP is not known. We previously reported that CD-NP is a poorer activator of human guanylyl cyclase-A (GC-A) and a better activator of human guanylyl cyclase-B than BNP. Here, guanylyl cyclase bioassays were used to compare the susceptibility of CD-NP verses ANP, BNP, CNP and DNP to inactivation by human kidney membranes. The half time (t(1/2)) for CD-NP inactivation was increased by factors of 13, 3 and 4 compared to ANP, BNP and CNP, respectively, when measured in the same assay. Surprisingly, DNP failed to undergo complete inactivation and was the most degradation resistant of the peptides tested. The neutral endopeptidase (NEP) inhibitor, phosphoramidon, blocked inactivation of CNP and CD-NP, but not BNP or DNP. In contrast, the general serine and cysteine protease inhibitor, leupeptin, completely blocked the degradation of BNP and CD-NP, but did not block CNP inactivation unless phosphoramidon was included in the assay. Thus, NPs with shorter carboxyl tails (ANP and CNP) are degraded by phosphoramidon-sensitive proteases and NPs with extended carboxyl tails (BNP, DNP and CD-NP) are resistant to NEP degradation and degraded by leupeptin-sensitive proteases. We conclude that DNP and CD-NP are highly resistant to proteolysis and that proteolytic resistance contributes to the beneficial cardiovascular properties of CD-NP. We suggest that this property may be exploited to increase the half-life of NP-based drugs.
设计的利钠肽(NPs)是药物开发的一个活跃领域。在犬和人类的研究中,设计的利钠肽 CD-NP 比重组 B 型利钠肽(BNP)具有更理想的治疗潜力,BNP 是众所周知的奈西立肽,已被批准用于治疗急性失代偿性心力衰竭。然而,为什么 CD-NP 比 BNP 更有效尚不清楚。我们之前报道过,CD-NP 是一种比 BNP 更差的人鸟苷酸环化酶-A(GC-A)激活剂,却是一种更好的人鸟苷酸环化酶-B 激活剂。在这里,鸟苷酸环化酶生物测定法用于比较 CD-NP 与 ANP、BNP、CNP 和 DNP 对人肾膜失活的敏感性。与 ANP、BNP 和 CNP 相比,当在相同的测定中测量时,CD-NP 失活的半衰期(t(1/2))分别增加了 13、3 和 4 倍。令人惊讶的是,DNP 未能完全失活,是测试的肽中最具抗降解性的。中性内肽酶(NEP)抑制剂磷氨酰胺阻断了 CNP 和 CD-NP 的失活,但不阻断 BNP 或 DNP。相比之下,一般的丝氨酸和半胱氨酸蛋白酶抑制剂亮肽素完全阻断了 BNP 和 CD-NP 的降解,但如果测定中不包括磷氨酰胺,则不阻断 CNP 失活。因此,羧基末端较短的 NPs(ANP 和 CNP)被磷氨酰胺敏感的蛋白酶降解,而羧基末端较长的 NPs(BNP、DNP 和 CD-NP)抵抗 NEP 降解并被亮肽素敏感的蛋白酶降解。我们得出结论,DNP 和 CD-NP 高度抵抗蛋白水解,蛋白水解抗性有助于 CD-NP 的有益心血管特性。我们建议,这种特性可以被利用来增加基于 NP 的药物的半衰期。