Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois 60637, USA.
J Biol Chem. 2011 Feb 11;286(6):4670-9. doi: 10.1074/jbc.M110.173252. Epub 2010 Nov 22.
Natriuretic peptides (NPs) are cyclic vasoactive peptide hormones with high therapeutic potential. Three distinct NPs (ANP, BNP, and CNP) can selectively activate natriuretic peptide receptors, NPR-A and NPR-B, raising the cyclic GMP (cGMP) levels. Insulin-degrading enzyme (IDE) was found to rapidly cleave ANP, but the functional consequences of such cleavages in the cellular environment and the molecular mechanism of recognition and cleavage remain unknown. Here, we show that reducing expression levels of IDE profoundly alters the response of NPR-A and NPR-B to the stimulation of ANP, BNP, and CNP in cultured cells. IDE rapidly cleaves ANP and CNP, thus inactivating their ability to raise intracellular cGMP. Conversely, reduced IDE expression enhances the stimulation of NPR-A and NPR-B by ANP and CNP, respectively. Instead of proteolytic inactivation, IDE cleavage can lead to hyperactivation of BNP toward NPR-A. Conversely, decreasing IDE expression reduces BNP-mediated signaling. Additionally, the cleavages of ANP and BNP by IDE render them active with NPR-B and a reduction of IDE expression diminishes the ability of ANP and BNP to stimulate NPR-B. Our kinetic and crystallographic analyses offer the molecular basis for the selective degradation of NPs and their variants by IDE. Furthermore, our studies reveal how IDE utilizes its catalytic chamber and exosite to engulf and bind up to two NPs leading to biased stochastic, non-sequential cleavages and the ability of IDE to switch its substrate selectivity. Thus, the evolutionarily conserved IDE may play a key role in modulating and reshaping the strength and duration of NP-mediated signaling.
利钠肽(NPs)是具有高治疗潜力的环状血管活性肽激素。三种不同的 NPs(ANP、BNP 和 CNP)可以选择性地激活利钠肽受体,NPR-A 和 NPR-B,从而提高环鸟苷酸(cGMP)水平。胰岛素降解酶(IDE)被发现可快速切割 ANP,但在细胞环境中切割的功能后果以及识别和切割的分子机制仍不清楚。在这里,我们表明,降低 IDE 的表达水平会深刻改变 NPR-A 和 NPR-B 对 ANP、BNP 和 CNP 刺激的反应在培养细胞中。IDE 可快速切割 ANP 和 CNP,从而使它们提高细胞内 cGMP 的能力失活。相反,降低 IDE 的表达水平分别增强了 NPR-A 和 NPR-B 对 ANP 和 CNP 的刺激。与蛋白水解失活相反,IDE 切割可导致 BNP 对 NPR-A 的过度激活。相反,降低 IDE 的表达会减少 BNP 介导的信号转导。此外,IDE 对 ANP 和 BNP 的切割使它们对 NPR-B 具有活性,并且降低 IDE 的表达会降低 ANP 和 BNP 刺激 NPR-B 的能力。我们的动力学和晶体学分析为 IDE 对 NPs 及其变体的选择性降解提供了分子基础。此外,我们的研究揭示了 IDE 如何利用其催化腔和外位结合多达两个 NPs,导致偏向随机、非顺序切割以及 IDE 改变其底物选择性的能力。因此,进化上保守的 IDE 可能在调节和重塑 NP 介导的信号的强度和持续时间方面发挥关键作用。