(1)Department of Chemistry and Chemical Biology, BioMaPS Institute for Quantitative Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
J Mol Biol. 2011 Jun 3;409(2):278-89. doi: 10.1016/j.jmb.2011.03.050. Epub 2011 Apr 1.
Understanding and predicting the mechanical properties of protein/DNA complexes are challenging problems in biophysics. Certain architectural proteins bind DNA without sequence specificity and strongly distort the double helix. These proteins rapidly bind and unbind, seemingly enhancing the flexibility of DNA as measured by cyclization kinetics. The ability of architectural proteins to overcome DNA stiffness has important biological consequences, but the detailed mechanism of apparent DNA flexibility enhancement by these proteins has not been clear. Here, we apply a novel Monte Carlo approach that incorporates the precise effects of protein on DNA structure to interpret new experimental data for the bacterial histone-like HU protein and two eukaryotic high-mobility group class B (HMGB) proteins binding to ∼200-bp DNA molecules. These data (experimental measurement of protein-induced increase in DNA cyclization) are compared with simulated cyclization propensities to deduce the global structure and binding characteristics of the closed protein/DNA assemblies. The simulations account for all observed (chain length and concentration dependent) effects of protein on DNA behavior, including how the experimental cyclization maxima, observed at DNA lengths that are not an integral helical repeat, reflect the deformation of DNA by the architectural proteins and how random DNA binding by different proteins enhances DNA cyclization to different levels. This combination of experiment and simulation provides a powerful new approach to resolve a long-standing problem in the biophysics of protein/DNA interactions.
理解和预测蛋白质/DNA 复合物的力学性质是生物物理学中的一个具有挑战性的问题。某些结构蛋白与 DNA 结合没有序列特异性,并且强烈扭曲双螺旋。这些蛋白质快速结合和解离,似乎通过环化动力学增强了 DNA 的灵活性。结构蛋白克服 DNA 刚性的能力具有重要的生物学后果,但这些蛋白质增强明显 DNA 灵活性的详细机制尚不清楚。在这里,我们应用一种新的蒙特卡罗方法,该方法将蛋白质对 DNA 结构的精确影响纳入其中,以解释细菌组蛋白样 HU 蛋白和两种真核高迁移率族 B 类(HMGB)蛋白与约 200-bp DNA 分子结合的新实验数据。将这些数据(蛋白质诱导的 DNA 环化增加的实验测量)与模拟环化倾向进行比较,以推断闭合蛋白/DNA 组装的整体结构和结合特性。模拟考虑了蛋白质对 DNA 行为的所有观察到的(链长和浓度依赖性)影响,包括实验环化最大值如何在不是完整螺旋重复的 DNA 长度处出现,反映了结构蛋白对 DNA 的变形,以及不同蛋白质的随机 DNA 结合如何增强 DNA 环化到不同水平。这种实验和模拟的结合为解决蛋白质/DNA 相互作用的生物物理学中的一个长期存在的问题提供了一种强大的新方法。