Department of Physics , University of Illinois at Chicago , Chicago , Illinois 60607 , United States.
Center for Molecular Modeling, Center for Information Technology , National Institutes of Health , Bethesda , Maryland 20892 , United States.
J Phys Chem B. 2018 Dec 13;122(49):11519-11534. doi: 10.1021/acs.jpcb.8b07405. Epub 2018 Nov 7.
Gene regulation depends on proteins that bind to specific DNA sites. Such specific recognition often involves severe DNA deformations, including sharp kinks. It has been unclear how rigid or flexible these protein-induced kinks are. Here, we investigated the dynamic nature of DNA in complex with integration host factor (IHF), a nucleoid-associated architectural protein known to bend one of its cognate sites (35 base pair H') into a U-turn by kinking DNA at two sites. We utilized fluorescence-lifetime-based FRET spectroscopy to assess the distribution of bent conformations in various IHF-DNA complexes. Our results reveal a surprisingly dynamic specific complex: while 78% of the IHF-H' population exhibited FRET efficiency consistent with the crystal structure, 22% exhibited FRET efficiency indicative of unbent or partially bent DNA. This conformational flexibility is modulated by sequence variations in the cognate site. In another site (H1) that lacks the A-tract of H' found on one side of the binding site, the extent of bending in the fully U-bent conformation decreased, and the population in that state decreased to 32%. A similar decrease in the U-bent population was observed with a single base mutation in H' in a consensus region on the other side. Taken together, these results provide important insights into the finely tuned interactions between IHF and its cognate sites that keep the DNA bent (or not) and yield quantitative data on the dynamic equilibrium between different DNA conformations (kinked or not kinked) that depend sensitively on DNA sequence and deformability. Notably, the difference in dynamics between IHF-H' and IHF-H1 reflects the different roles of these complexes in their natural context, in the phage lambda "intasome" (the complex that integrates phage lambda into the E. coli chromosome).
基因调控依赖于能够与特定 DNA 位点结合的蛋白质。这种特异性识别通常涉及到严重的 DNA 变形,包括尖锐的扭曲。目前尚不清楚这些由蛋白质诱导的扭曲是刚性的还是柔性的。在这里,我们研究了与整合宿主因子(IHF)结合的 DNA 的动态性质,IHF 是一种核小体相关的结构蛋白,已知它通过在两个位点使 DNA 扭曲,将其同源位点(35 个碱基对 H')中的一个弯曲成 U 形。我们利用基于荧光寿命的 FRET 光谱学来评估各种 IHF-DNA 复合物中弯曲构象的分布。我们的结果揭示了一个令人惊讶的动态特异性复合物:虽然 78%的 IHF-H'群体表现出与晶体结构一致的 FRET 效率,但 22%表现出未弯曲或部分弯曲 DNA 的 FRET 效率。这种构象灵活性受到同源位点序列变异的调节。在另一个位点(H1)中,该位点缺乏结合位点一侧的 H'上的 A 链,完全 U 形弯曲的构象的弯曲程度降低,该状态的群体减少到 32%。在同源位点的另一侧的保守区域中,H'的单个碱基突变也观察到 U 形弯曲群体的类似减少。总之,这些结果提供了关于 IHF 与其同源位点之间精细调节的相互作用的重要见解,这些相互作用使 DNA 保持弯曲(或不弯曲),并提供了关于不同 DNA 构象(弯曲或不弯曲)之间动态平衡的定量数据,这些数据敏感地依赖于 DNA 序列和变形性。值得注意的是,IHF-H'和 IHF-H1 之间的动力学差异反映了这些复合物在其自然环境中的不同作用,即在噬菌体 lambda“intasome”(将噬菌体 lambda 整合到大肠杆菌染色体中的复合物)中。