Laboratory for Neuronal Growth Mechanisms, RIKEN Brain Science Institute, 2–1 Hirosawa, Wako, Saitama 351–0198, Japan.
Mol Cell Neurosci. 2011 Dec;48(4):332-8. doi: 10.1016/j.mcn.2011.03.007. Epub 2011 Apr 1.
Neuronal network formation relies on the motile behavior of growth cones at the tip of navigating axons. Accumulating evidence indicates that growth cone motility requires spatially controlled endocytosis and exocytosis that can redistribute bulk membrane and functional cargos such as cell adhesion molecules. For axon elongation, the growth cone recycles cell adhesion molecules from its rear to its leading front through endosomes, thereby polarizing growth cone adhesiveness along the axis of migration direction. In response to extracellular guidance cues, the growth cone turns by retrieving membrane components from the retractive side or by supplying them to the side facing the new direction. We propose that polarized membrane trafficking creates adhesion gradients along and across the front-to-rear axis of growth cones that are essential for axon elongation and turning, respectively. This review will examine how growth cone adhesiveness can be patterned by spatially coordinated endocytosis and exocytosis of cell adhesion molecules. This article is part of a Special Issue entitled 'Neuronal Function'.
神经网络的形成依赖于导航轴突末端生长锥的运动行为。越来越多的证据表明,生长锥的运动需要空间控制的内吞作用和外排作用,从而重新分配大量的膜和功能货物,如细胞粘附分子。对于轴突伸长,生长锥通过内体将细胞粘附分子从后端循环到前端,从而沿着迁移方向的轴极化生长锥的粘附性。为了响应细胞外的导向线索,生长锥通过从收缩侧回收膜成分或向新方向的侧供应膜成分来转弯。我们提出,极化的膜运输在生长锥的前后轴沿线和横向创建粘附梯度,这对于轴突伸长和转弯分别是必需的。这篇综述将探讨如何通过细胞粘附分子的空间协调内吞作用和外排作用来形成生长锥的粘附性。本文是特刊“神经元功能”的一部分。