Suppr超能文献

乙酰生成菌和乙酸营养产甲烷古菌控制废弃煤矿甲烷形成。

Acetogens and acetoclastic methanosarcinales govern methane formation in abandoned coal mines.

机构信息

Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Carl-von-Ossietzky Straße, 9-11, D-26129 Oldenburg, Germany.

出版信息

Appl Environ Microbiol. 2011 Jun;77(11):3749-56. doi: 10.1128/AEM.02818-10. Epub 2011 Apr 1.

Abstract

In abandoned coal mines, methanogenic archaea are responsible for the production of substantial amounts of methane. The present study aimed to directly unravel the active methanogens mediating methane release as well as active bacteria potentially involved in the trophic network. Therefore, the stable-isotope-labeled precursors of methane, [(13)C]acetate and H(2)-(13)CO(2), were fed to liquid cultures from hard coal and mine timber from a coal mine in Germany. Guided by methane production rates, samples for DNA stable-isotope probing (SIP) with subsequent quantitative PCR and denaturing gradient gel electrophoretic (DGGE) analyses were taken over 6 months. Surprisingly, the formation of [(13)C]methane was linked to acetoclastic methanogenesis in both the [(13)C]acetate- and the H(2)-(13)CO(2)-amended cultures of coal and timber. H(2)-(13)CO(2) was used mainly by acetogens related to Pelobacter acetylenicus and Clostridium species. Active methanogens, closely affiliated with Methanosarcina barkeri, utilized the readily available acetate rather than the thermodynamically more favorable hydrogen. Thus, the methanogenic microbial community appears to be highly adapted to the low-H(2) conditions found in coal mines.

摘要

在废弃的煤矿中,产甲烷古菌负责产生大量的甲烷。本研究旨在直接揭示介导甲烷释放的活跃产甲烷菌以及可能参与营养网络的活跃细菌。因此,将稳定同位素标记的甲烷前体 [(13)C]乙酸盐和 H(2)-(13)CO(2) 喂入来自德国煤矿的硬煤和煤矿木材的液体培养物中。根据甲烷产生率,在 6 个月的时间内,对 DNA 稳定同位素探测 (SIP) 进行了采样,随后进行了定量 PCR 和变性梯度凝胶电泳 (DGGE) 分析。令人惊讶的是,[(13)C]乙酸盐和 H(2)-(13)CO(2) 两种处理的煤和木材的培养物中,[(13)C]甲烷的形成都与乙酸营养型产甲烷作用有关。H(2)-(13)CO(2) 主要被与 Pelobacter acetylenicus 和 Clostridium 属相关的乙酰辅酶 A 形成菌利用。与 Methanosarcina barkeri 密切相关的活跃产甲烷菌利用了易于获得的乙酸盐,而不是热力学上更有利的氢气。因此,产甲烷微生物群落似乎高度适应煤矿中低 H(2)的条件。

相似文献

1
Acetogens and acetoclastic methanosarcinales govern methane formation in abandoned coal mines.
Appl Environ Microbiol. 2011 Jun;77(11):3749-56. doi: 10.1128/AEM.02818-10. Epub 2011 Apr 1.
2
Competing formate- and carbon dioxide-utilizing prokaryotes in an anoxic methane-emitting fen soil.
Appl Environ Microbiol. 2011 Jun;77(11):3773-85. doi: 10.1128/AEM.00282-11. Epub 2011 Apr 8.
3
Microbial methane production in deep aquifer associated with the accretionary prism in Japan.
ISME J. 2010 Apr;4(4):531-41. doi: 10.1038/ismej.2009.132. Epub 2009 Dec 3.
4
Changes in methane emission, rumen fermentation, and methanogenic community in response to silage and dry cornstalk diets.
J Basic Microbiol. 2014 Jun;54(6):521-30. doi: 10.1002/jobm.201200678. Epub 2013 May 22.
5
Effect of spatial differences in microbial activity, pH, and substrate levels on methanogenesis initiation in refuse.
Appl Environ Microbiol. 2011 Apr;77(7):2381-91. doi: 10.1128/AEM.02349-10. Epub 2011 Feb 4.
6
Mature fine tailings from oil sands processing harbour diverse methanogenic communities.
Can J Microbiol. 2010 Jun;56(6):459-70. doi: 10.1139/w10-029.
7
Insights into networks of functional microbes catalysing methanization of cellulose under mesophilic conditions.
Environ Microbiol. 2009 Apr;11(4):889-904. doi: 10.1111/j.1462-2920.2008.01810.x. Epub 2008 Dec 8.
9
The influence of hydrogeological disturbance and mining on coal seam microbial communities.
Geobiology. 2016 Mar;14(2):163-75. doi: 10.1111/gbi.12166. Epub 2015 Nov 6.
10
Acetoclastic methane formation from Eucalyptus detritus in pristine hydrocarbon-rich river sediments by Methanosarcinales.
FEMS Microbiol Ecol. 2014 Dec;90(3):587-98. doi: 10.1111/1574-6941.12418. Epub 2014 Sep 15.

引用本文的文献

1
Exploring the Potential of Microbial Coalbed Methane for Sustainable Energy Development.
Molecules. 2024 Jul 25;29(15):3494. doi: 10.3390/molecules29153494.
2
New insights into the coal-associated methane architect: the ancient archaebacteria.
Arch Microbiol. 2024 Apr 25;206(5):234. doi: 10.1007/s00203-024-03961-1.
3
Culture-independent assessment of the indigenous microbial diversity of Raniganj coal bed methane block, Durgapur.
Front Microbiol. 2023 Sep 4;14:1233605. doi: 10.3389/fmicb.2023.1233605. eCollection 2023.
4
Algal amendment enhances biogenic methane production from coals of different thermal maturity.
Front Microbiol. 2023 Mar 10;14:1097500. doi: 10.3389/fmicb.2023.1097500. eCollection 2023.
5
Seasonal variation of microbial community and methane metabolism in coalbed water in the Erlian Basin, China.
Front Microbiol. 2023 Feb 10;14:1114201. doi: 10.3389/fmicb.2023.1114201. eCollection 2023.
6
Comparison of enhancement of anaerobic digestion of waste activated sludge through adding nano-zero valent iron and zero valent iron.
RSC Adv. 2018 Jul 31;8(48):27181-27190. doi: 10.1039/c8ra05369c. eCollection 2018 Jul 30.
7
Alteration of Methanogenic Archaeon by Ethanol Contribute to the Enhancement of Biogenic Methane Production of Lignite.
Front Microbiol. 2019 Oct 10;10:2323. doi: 10.3389/fmicb.2019.02323. eCollection 2019.
8
Long-term succession in a coal seam microbiome during in situ biostimulation of coalbed-methane generation.
ISME J. 2019 Mar;13(3):632-650. doi: 10.1038/s41396-018-0296-5. Epub 2018 Oct 15.
9
Analysis of methanogens adsorption and biogas production characteristics from different coal surfaces.
Environ Sci Pollut Res Int. 2019 May;26(14):13825-13832. doi: 10.1007/s11356-018-3219-0. Epub 2018 Oct 1.
10
Stable Isotope and Metagenomic Profiling of a Methanogenic Naphthalene-Degrading Enrichment Culture.
Microorganisms. 2018 Jul 10;6(3):65. doi: 10.3390/microorganisms6030065.

本文引用的文献

1
Stimulation of methane generation from nonproductive coal by addition of nutrients or a microbial consortium.
Appl Environ Microbiol. 2010 Nov;76(21):7013-22. doi: 10.1128/AEM.00728-10. Epub 2010 Sep 3.
2
Diversity and activity of methanotrophs in alkaline soil from a Chinese coal mine.
FEMS Microbiol Ecol. 2009 Nov;70(2):40-51. doi: 10.1111/j.1574-6941.2009.00707.x. Epub 2009 May 7.
3
Use of order-specific primers to investigate the methanogenic diversity in acetate enrichment system.
J Ind Microbiol Biotechnol. 2008 Nov;35(11):1345-52. doi: 10.1007/s10295-008-0417-7. Epub 2008 Aug 20.
4
Indole production by Pseudomonas stutzeri strain NAP-3 during anaerobic naphthalene biodegradation in the presence of dimethyl formamide.
J Environ Sci Health A Tox Hazard Subst Environ Eng. 2008 Jul 15;43(9):1027-34. doi: 10.1080/10934520802059896.
5
Methane-producing microbial community in a coal bed of the Illinois basin.
Appl Environ Microbiol. 2008 Apr;74(8):2424-32. doi: 10.1128/AEM.02341-07. Epub 2008 Feb 29.
6
DNA stable-isotope probing.
Nat Protoc. 2007;2(4):860-6. doi: 10.1038/nprot.2007.109.
8
Widespread distribution and high abundance of Rhizobium radiobacter within Mediterranean subsurface sediments.
Environ Microbiol. 2006 Oct;8(10):1753-63. doi: 10.1111/j.1462-2920.2006.01058.x.
9
Effect of petrochemical sludge concentrations on microbial communities during soil bioremediation.
FEMS Microbiol Ecol. 2005 Jul 1;53(2):305-16. doi: 10.1016/j.femsec.2005.01.014.
10
Detecting active methanogenic populations on rice roots using stable isotope probing.
Environ Microbiol. 2005 Mar;7(3):326-36. doi: 10.1111/j.1462-2920.2005.00697.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验