Suppr超能文献

证明触发 REM 睡眠的亚外侧背盖核神经元是谷氨酸能的。

Evidence that neurons of the sublaterodorsal tegmental nucleus triggering paradoxical (REM) sleep are glutamatergic.

机构信息

Physiopathology of the Neuronal Network Responsible for the Sleep-Waking Cycle Team, CNRS UMR5292, INSERM U1028, Lyon Neuroscience, Research Center, Lyon, F-69372, France.

出版信息

Sleep. 2011 Apr 1;34(4):419-23. doi: 10.1093/sleep/34.4.419.

Abstract

STUDY OBJECTIVES

To determine whether sublaterodorsal tegmental nucleus (SLD) neurons triggering paradoxical (REM) sleep (PS) are glutamatergic.

DESIGN

Three groups of rats were used: controls, rats deprived of PS for 72 h, and rats allowed to recover for 3 h after deprivation. Brain sections were processed for double labeling combining Fos immunohistochemistry and vesicular glutamate transporter 2 (vGLUT2) in situ hybridization.

MEASUREMENTS AND RESULTS

The number of single Fos+ and Fos/vGLUT2+ double-labeled neurons was counted for each experimental condition. A very large number of Fos+ neurons expressing vGLUT2 mRNA specifically after PS hypersomnia was counted in the SLD. These double-labeled cells accounted for 84% of the total number of Fos+ cells.

CONCLUSIONS

This finding adds further evidence to the concept that PS-on neurons of the SLD generating PS are of small size and glutamatergic in nature. By means of their descending projections to medullary and/or spinal glycinergic/GABAergic premotoneurons, they may be especially important for the induction of muscle atonia during PS, a disturbed phenomenon in narcolepsy and REM sleep behavior disorder.

摘要

研究目的

确定触发反常(REM)睡眠(PS)的下丘脑背外侧被盖核(SLD)神经元是否为谷氨酸能性的。

设计

使用了三组大鼠:对照组、PS 剥夺 72 h 组和剥夺后恢复 3 h 组。脑切片进行双重标记,结合 Fos 免疫组化和囊泡谷氨酸转运体 2(vGLUT2)原位杂交。

测量和结果

对每种实验条件下的单个 Fos+和 Fos/vGLUT2+双标记神经元的数量进行了计数。在 SLD 中,大量表达 vGLUT2 mRNA 的 Fos+神经元在 PS 过度嗜睡后特异性出现。这些双标记细胞占 Fos+细胞总数的 84%。

结论

这一发现进一步证明了 SLD 中产生 PS 的 PS 神经元体积小,本质上为谷氨酸能性的观点。通过它们对延髓和/或脊髓甘氨酸/GABA 能前运动神经元的下行投射,它们可能对 PS 期间肌肉弛缓特别重要,而在发作性睡病和 REM 睡眠行为障碍中,这种现象受到干扰。

相似文献

5
A Discrete Glycinergic Neuronal Population in the Ventromedial Medulla That Induces Muscle Atonia during REM Sleep and Cataplexy in Mice.
J Neurosci. 2021 Feb 17;41(7):1582-1596. doi: 10.1523/JNEUROSCI.0688-20.2020. Epub 2020 Dec 28.
6
Differential origin of the activation of dorsal and ventral dentate gyrus granule cells during paradoxical (REM) sleep in the rat.
Brain Struct Funct. 2017 Apr;222(3):1495-1507. doi: 10.1007/s00429-016-1289-7. Epub 2016 Aug 18.
7
Paradoxical (REM) sleep genesis by the brainstem is under hypothalamic control.
Curr Opin Neurobiol. 2013 Oct;23(5):786-92. doi: 10.1016/j.conb.2013.02.006. Epub 2013 Mar 13.
8
Brainstem and spinal cord circuitry regulating REM sleep and muscle atonia.
PLoS One. 2011;6(10):e24998. doi: 10.1371/journal.pone.0024998. Epub 2011 Oct 17.
10
Paradoxical (REM) sleep genesis: the switch from an aminergic-cholinergic to a GABAergic-glutamatergic hypothesis.
J Physiol Paris. 2006 Nov-Dec;100(5-6):271-83. doi: 10.1016/j.jphysparis.2007.05.006. Epub 2007 Jun 8.

引用本文的文献

3
Phasic Dopamine Release in the Nucleus Accumbens Influences REM Sleep Timing.
J Neurosci. 2025 Feb 26;45(9):e1374242024. doi: 10.1523/JNEUROSCI.1374-24.2024.
4
Chemogenetic activation of astrocytes modulates sleep-wakefulness states in a brain region-dependent manner.
Sleep Adv. 2024 Dec 17;5(1):zpae091. doi: 10.1093/sleepadvances/zpae091. eCollection 2024.
5
Influence of sleep on seizures and interictal epileptiform discharges in epilepsy.
Encephalitis. 2025 Jan;5(1):1-5. doi: 10.47936/encephalitis.2024.00087. Epub 2024 Nov 12.
6
Central pattern generator control of a vertebrate ultradian sleep rhythm.
Nature. 2024 Dec;636(8043):681-689. doi: 10.1038/s41586-024-08162-w. Epub 2024 Nov 6.
9
Ganoderma lucidum spore extract improves sleep disturbances in a rat model of sporadic Alzheimer's disease.
Front Pharmacol. 2024 Apr 24;15:1390294. doi: 10.3389/fphar.2024.1390294. eCollection 2024.
10
Neural Control of REM Sleep and Motor Atonia: Current Perspectives.
Curr Neurol Neurosci Rep. 2023 Dec;23(12):907-923. doi: 10.1007/s11910-023-01322-x. Epub 2023 Dec 7.

本文引用的文献

2
Alternating vigilance states: new insights regarding neuronal networks and mechanisms.
Eur J Neurosci. 2009 May;29(9):1741-53. doi: 10.1111/j.1460-9568.2009.06722.x. Epub 2009 Apr 28.
3
Melanin-concentrating hormone neurons discharge in a reciprocal manner to orexin neurons across the sleep-wake cycle.
Proc Natl Acad Sci U S A. 2009 Feb 17;106(7):2418-22. doi: 10.1073/pnas.0811400106. Epub 2009 Feb 2.
4
Localization of the brainstem GABAergic neurons controlling paradoxical (REM) sleep.
PLoS One. 2009;4(1):e4272. doi: 10.1371/journal.pone.0004272. Epub 2009 Jan 26.
6
Paradoxical (REM) sleep genesis: the switch from an aminergic-cholinergic to a GABAergic-glutamatergic hypothesis.
J Physiol Paris. 2006 Nov-Dec;100(5-6):271-83. doi: 10.1016/j.jphysparis.2007.05.006. Epub 2007 Jun 8.
7
A putative flip-flop switch for control of REM sleep.
Nature. 2006 Jun 1;441(7093):589-94. doi: 10.1038/nature04767. Epub 2006 May 10.
8
GABAergic control of hypothalamic melanin-concentrating hormone-containing neurons across the sleep-waking cycle.
Neuroreport. 2005 Jul 13;16(10):1069-73. doi: 10.1097/00001756-200507130-00008.
9
10
State-dependent activity of neurons in the perifornical hypothalamic area during sleep and waking.
Neuroscience. 2003;119(4):1209-19. doi: 10.1016/s0306-4522(03)00173-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验