Walpoth B H, Möller M
Departement für Herz- und Gefässchirurgie, Medizinische Fakultät, Universitätsspital Genf, Rue Gabrielle-Perret-Gentile 4, Genf, Switzerland.
Chirurg. 2011 Apr;82(4):303-10. doi: 10.1007/s00104-010-2029-9.
Vascular tissue engineering represents a new but rapidly growing field due to the need for better vascular prostheses for coronary or peripheral revascularization procedures. Current synthetic prostheses have a high incidence of failure due to thrombosis and/or intimal hyperplasia especially in small caliber artificial vascular prostheses. New approaches such as decellularized, natural or synthetic, 3-D stable/degradable scaffolds are being developed for acellular or cell-based vascular replacements. The drawbacks of cellular bioreactor matured prostheses are delayed availability and that they are, labor and cost-intensive. However, some research groups have shown limited clinical applications. The acellular approach is based on a biodegradable, electrospun, porous 3-D structure made of nano- and micro-sized polycaprolactone fibers. Animal studies in rats and pigs have shown good short and long-term results after arterial replacement with autologous cellular and matrix ingrowth, angiogenesis, confluent endothelialization and absence of occlusions or aneurysm formation. Therefore, the in vivo vascular tissue engineering approach produces shelf-ready biodegradable vascular prostheses which might be an option for future clinical applications.
由于冠状动脉或外周血管重建手术需要更好的血管假体,血管组织工程是一个新兴但发展迅速的领域。目前的合成假体由于血栓形成和/或内膜增生,失败率很高,尤其是在小口径人工血管假体中。正在开发新的方法,如脱细胞的、天然的或合成的三维稳定/可降解支架,用于无细胞或基于细胞的血管替代物。细胞生物反应器成熟的假体的缺点是可用性延迟,而且它们劳动强度大、成本高。然而,一些研究小组已经展示了有限的临床应用。脱细胞方法基于由纳米和微米尺寸的聚己内酯纤维制成的可生物降解、电纺、多孔三维结构。在大鼠和猪身上进行的动物研究表明,用自体细胞和基质向内生长、血管生成、汇合内皮化以及没有阻塞或动脉瘤形成进行动脉置换后,短期和长期效果都很好。因此,体内血管组织工程方法产生了随时可用的可生物降解血管假体,这可能是未来临床应用的一个选择。