Center for Computational Quantum Chemistry, South China Normal University, Guangzhou, People's Republic of China.
J Phys Chem A. 2011 May 5;115(17):4491-504. doi: 10.1021/jp1119712. Epub 2011 Apr 4.
A number of evanescent unsubstituted homoleptic allyl derivatives M(C(3)H(5))(n) of the first row transition metals have been reported in the literature. In addition, the much more thermally stable silylated derivatives MC(3)H(3)(SiMe(3))(2) (M = Cr, Fe, Co, Ni) are reported to survive vacuum sublimation without significant decomposition. In this connection, the complete series of homoleptic allyl derivatives M(C(3)H(5))(n) (n = 2, 3; M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni) have been studied theoretically using density functional theory. In most of the lowest energy predicted M(C(3)H(5))(n) structures all of the allyl groups are bonded as trihapto η(3)-C(3)H(5) ligands and the metals have considerably less than the normally favored 18-electron configuration. Such ligands can be considered formally as bidentate ligands with the metal atom connected to the centers of the two C-C bonds of the η(3)-C(3)H(5) group. The later transition metal diallyls M(C(3)H(5))(2) (M = Cr, Mn, Fe, Co, Ni) form two stereoisomers of similar relative energies, namely the C(2h) staggered isomer and the C(2v) eclipsed isomer with the orientation of the η(3)-C(3)H(5) groups corresponding to square planar metal coordination of the bidentate η(3)-C(3)H(5) ligands. The staggered and eclipsed Ni(C(3)H(5))(2) isomers have been observed experimentally by NMR. Less symmetrical M(C(3)H(5))(2) structures are found for the earlier transition metals Sc, Ti, and V in which the orientation of the allyl groups corresponds to tetrahedral metal coordination. The triallylmetal derivatives M(C(3)H(5))(3) are predicted to be thermodynamically viable with respect to allyl loss to give the corresponding diallylmetal derivatives, except for triallylnickel. The lowest energy Ni(C(3)H(5))(3) structure has two trihaptoallyl ligands and one monohaptoallyl ligand, whereas the lowest energy Mn(C(3)H(5))(3) structures have only one trihaptoallyl ligand and two monohaptoallyl ligands. Otherwise, the M(C(3)H(5))(3) complexes have structures with three trihaptoallyl ligands corresponding formally to octahedral metal coordination. The M(C(3)H(5))(3) complexes (M = Cr, Co) thus correspond to a well-known series of "classical" octahedral coordination complexes, namely, those of the d(3) Cr(III) and the d(6) Co(III), respectively.
许多第一过渡金属的瞬变无取代丙烯基衍生物 M(C(3)H(5))(n) 在文献中已有报道。此外,更热稳定的硅烷化衍生物 MC(3)H(3)(SiMe(3))(2)(M = Cr、Fe、Co、Ni)据报道在真空升华过程中幸存下来,没有明显分解。在这方面,使用密度泛函理论对完整的丙烯基衍生物 M(C(3)H(5))(n)(n = 2,3;M = Sc、Ti、V、Cr、Mn、Fe、Co、Ni)系列进行了理论研究。在预测的最低能量 M(C(3)H(5))(n)结构中,大多数丙烯基基团都以三配位η(3)-C(3)H(5)配体的形式结合,金属的电子数远远少于通常有利的 18 电子构型。这种配体可以被认为是形式上的双齿配体,金属原子连接到η(3)-C(3)H(5)基团的两个 C-C 键的中心。后过渡金属二烯丙基 M(C(3)H(5))(2)(M = Cr、Mn、Fe、Co、Ni)形成两种具有相似相对能量的立体异构体,即 C(2h)交错异构体和 C(2v)重叠异构体,η(3)-C(3)H(5)基团的取向对应于双齿η(3)-C(3)H(5)配体的平面配位金属。交错和重叠的 Ni(C(3)H(5))(2)异构体已通过 NMR 实验观察到。对于 Sc、Ti 和 V 等早期过渡金属,发现了不太对称的 M(C(3)H(5))(2)结构,其中丙烯基基团的取向对应于四面体配位金属。预测三烯丙基金属衍生物 M(C(3)H(5))(3)在热力学上是可行的,相对于丙烯基的损失,可得到相应的二烯丙基金属衍生物,除了三烯丙基镍。最低能量的 Ni(C(3)H(5))(3)结构具有两个三配位丙烯基配体和一个单配位丙烯基配体,而最低能量的 Mn(C(3)H(5))(3)结构只有一个三配位丙烯基配体和两个单配位丙烯基配体。否则,M(C(3)H(5))(3)配合物具有三个三配位丙烯基配体的结构,形式上对应于八面体配位金属。因此,M(C(3)H(5))(3)配合物(M = Cr、Co)对应于一类众所周知的“经典”八面体配位配合物,即 d(3)Cr(III)和 d(6)Co(III)。