Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA.
J Biol Chem. 2011 Jun 10;286(23):20163-74. doi: 10.1074/jbc.M110.196360. Epub 2011 Apr 5.
In the endoplasmic reticulum (ER), nascent membrane and secreted proteins that are misfolded are retrotranslocated into the cytosol and degraded by the proteasome. For most ER-associated degradation (ERAD) substrates, ubiquitylation is essential for both their retrotranslocation and degradation. Yeast Doa10 is a polytopic membrane ubiquitin ligase (E3) that along with its cognate ubiquitin-conjugating enzymes (E2s), Ubc7 and the C-terminally membrane-anchored Ubc6, makes a major contribution to ER-associated degradation. Ubc6 is also a substrate of Doa10. One highly conserved Doa10 element, the uncharacterized ~130-residue TEB4-Doa10 domain, includes three transmembrane helices (TMs). We find that the first of these, TM5, includes an absolutely conserved ΦPΦXXG motif that is required for Doa10 function, as well as highly conserved negatively charged glutamate and aspartate residues. The conservative exchange of the TM5 glutamate to aspartate (doa10-E633D) results in complete stabilization of Ubc6 but has little if any effect on other substrates. Unexpectedly, mutating the glutamate to glutamine (doa10-E633Q) specifically accelerates Ubc6 degradation by ~5-fold. Other substrates are weakly stabilized in doa10-E633Q cells, consistent with reduced Ubc6 levels. Notably, catalytically inactive ubc6-C87A is degraded in doa10-E633Q but not wild-type cells, but an active version of Ubc6 is required in trans. Fusion of the Ubc6 TM to a soluble protein yields a protein that is degraded in a doa10-E633Q-dependent manner, whereas fusion of the C-terminal TM from an unrelated protein does not. These results suggest that the TEB4-Doa10 domain regulates Doa10 association with the Ubc6 membrane anchor, thereby controlling the degradation rate of the E2.
在内质网 (ER) 中,错误折叠的新生膜和分泌蛋白被逆向转运到细胞质中,并被蛋白酶体降解。对于大多数 ER 相关降解 (ERAD) 底物,泛素化对于它们的逆向转运和降解都是必不可少的。酵母 Doa10 是一种多跨膜泛素连接酶 (E3),它与其同源泛素连接酶 (E2)、Ubc7 和 C 末端膜锚定的 Ubc6 一起,为 ER 相关降解做出了重要贡献。Ubc6 也是 Doa10 的底物。Doa10 的一个高度保守的元素是未被描述的~130 残基 TEB4-Doa10 结构域,包括三个跨膜螺旋 (TM)。我们发现,其中第一个 TM5 包含一个绝对保守的 ΦPΦXXG 基序,该基序对于 Doa10 的功能是必需的,还有高度保守的带负电荷的谷氨酸和天冬氨酸残基。将 TM5 谷氨酸保守地替换为天冬氨酸 (doa10-E633D) 会导致 Ubc6 完全稳定,但对其他底物几乎没有影响。出乎意料的是,将谷氨酸突变为谷氨酰胺 (doa10-E633Q) 会特异性地将 Ubc6 降解速度提高约 5 倍。在 doa10-E633Q 细胞中,其他底物的稳定性较弱,与 Ubc6 水平降低一致。值得注意的是,催化失活的 ubc6-C87A 在 doa10-E633Q 中降解,但在野生型细胞中不降解,但需要在转染中使用活性版本的 Ubc6。Ubc6TM 与可溶性蛋白的融合产物以依赖于 doa10-E633Q 的方式降解,而与不相关蛋白的 C 末端 TM 的融合则不降解。这些结果表明,TEB4-Doa10 结构域调节 Doa10 与 Ubc6 膜锚的结合,从而控制 E2 的降解速度。