Koenig H, Goldstone A D, Lu C Y, Trout J J
Neurology Service, VA Lakeside Medical Center, Chicago, IL 60611.
Stroke. 1990 Nov;21(11 Suppl):III98-102.
We studied the time course and molecular mechanisms of changes in brain polyamines and their rate-regulatory synthetic enzyme ornithine decarboxylase during reversible forebrain ischemia and recirculation in the gerbil. Bilateral carotid occlusion induced an acute (less than 2 minutes), transient increase in ornithine decarboxylase activity and putrescine level. After 15 minutes of ischemia, recirculation evoked an immediate (less than 1 minute) increase in ornithine decarboxylase activity and putrescine concentration that progressed over a 15-minute period. A small rise in spermidine and spermine also was observed. A secondary increase in ornithine decarboxylase activity and the levels of putrescine and spermidine commenced after 6 hours of recirculation. Pretreatment with a-difluoromethylornithine, a specific suicide inhibitor of ornithine decarboxylase, or MK-801, a noncompetitive N-methyl-D-aspartate receptor antagonist, abolished all early and delayed increases in ornithine decarboxylase activity and polyamine levels. This is the first demonstration that both ischemia and postischemic recirculation evoke rapid, transient increases in the activity of ornithine decarboxylase and the levels of polyamines, most notably the ornithine decarboxylase product, putrescine. Our results indicate that N-methyl-D-aspartate receptor activation (by an ischemically induced elevation of extracellular glutamate) is responsible for initiating the early and the delayed stimulation of ornithine decarboxylase activity. Ornithine decarboxylase activation causes the rapid rise in the levels of putrescine and higher polyamines observed in the acute response to ischemia and the acute and delayed response to postischemic recirculation. These polyamine changes may be involved in the pathophysiology of Ca2+ entry and neuronal death after brain ischemia.
我们研究了沙鼠可逆性前脑缺血及再灌注过程中脑内多胺及其速率调节合成酶鸟氨酸脱羧酶变化的时间进程和分子机制。双侧颈动脉闭塞引起鸟氨酸脱羧酶活性和腐胺水平急性(少于2分钟)、短暂升高。缺血15分钟后,再灌注立即(少于1分钟)引起鸟氨酸脱羧酶活性和腐胺浓度升高,并在15分钟内持续上升。同时还观察到亚精胺和精胺有小幅升高。再灌注6小时后,鸟氨酸脱羧酶活性以及腐胺和亚精胺水平出现二次升高。用鸟氨酸脱羧酶的特异性自杀性抑制剂α-二氟甲基鸟氨酸或非竞争性N-甲基-D-天冬氨酸受体拮抗剂MK-801预处理,可消除鸟氨酸脱羧酶活性和多胺水平的所有早期和延迟升高。这首次证明,缺血和缺血后再灌注均能引起鸟氨酸脱羧酶活性和多胺水平迅速、短暂升高,最显著的是鸟氨酸脱羧酶产物腐胺。我们的结果表明,N-甲基-D-天冬氨酸受体激活(由缺血诱导的细胞外谷氨酸升高引起)是启动鸟氨酸脱羧酶活性早期和延迟刺激的原因。鸟氨酸脱羧酶激活导致在对缺血的急性反应以及对缺血后再灌注的急性和延迟反应中观察到的腐胺和高级多胺水平迅速升高。这些多胺变化可能参与脑缺血后Ca2+内流和神经元死亡的病理生理过程。