Suppr超能文献

甲基-β-环糊精优先从巨大的单层囊泡的无序液相中去除胆固醇。

Methyl-β-cyclodextrins preferentially remove cholesterol from the liquid disordered phase in giant unilamellar vesicles.

机构信息

Laboratory for Fluorescence Dynamics, University of California at Irvine, Irvine, CA, USA.

出版信息

J Membr Biol. 2011 May;241(1):1-10. doi: 10.1007/s00232-011-9348-8. Epub 2011 Apr 6.

Abstract

Methyl-β-cyclodextrins (MβCDs) are molecules that are extensively used to remove and to load cholesterol (Chol) from artificial and natural membranes; however, the mechanism of Chol extraction by MβCD from pure lipids or from complex mixtures is not fully understood. One of the outstanding questions in this field is the capability of MβCD to remove Chol from lipid domains having different packing. Here, we investigated the specificity of MβCD to remove Chol from coexisting macrodomains with different lipid packing. We used giant unilamellar vesicles (GUVs) made of 1,2-dioleoylphosphatidylcholine:1,2-dipalmitoylphatidylcholine:free cholesterol, 1:1:1 molar ratio at 27°C. Under these conditions, individual GUVs present Chol distributed into lo and ld phases. The two phases can be distinguished and visualized using Laurdan generalized polarization and two-photon excitation fluorescence microscopy. Our data indicate that MβCD removes Chol preferentially from the more disordered phase. The process of selective Chol removal is dependent on the MβCD concentration. At high concentrations, MβCD also removes phospholipids.

摘要

甲基-β-环糊精(MβCD)是一种广泛用于从人工和天然膜中去除和加载胆固醇(Chol)的分子;然而,MβCD 从纯脂质或复杂混合物中提取 Chol 的机制尚未完全理解。该领域的一个突出问题是 MβCD 从具有不同堆积的脂质域中去除 Chol 的能力。在这里,我们研究了 MβCD 从具有不同脂质堆积的共存大分子中去除 Chol 的特异性。我们使用了由 1,2-二油酰基-sn-甘油-3-磷酸胆碱:1,2-二月桂酰基-sn-甘油-3-磷酸胆碱:游离胆固醇,摩尔比为 1:1:1 在 27°C 下制成的巨大单层囊泡(GUVs)。在这些条件下,单个 GUVs 呈现出分布在 lo 和 ld 相中的 Chol。可以使用 Laurdan 广义极化和双光子激发荧光显微镜来区分和可视化这两个相。我们的数据表明,MβCD 优先从更无序的相中去除 Chol。选择性 Chol 去除的过程取决于 MβCD 的浓度。在高浓度下,MβCD 也会去除磷脂。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3815/3082695/a5ba6411bb23/232_2011_9348_Fig1_HTML.jpg

相似文献

1
Methyl-β-cyclodextrins preferentially remove cholesterol from the liquid disordered phase in giant unilamellar vesicles.
J Membr Biol. 2011 May;241(1):1-10. doi: 10.1007/s00232-011-9348-8. Epub 2011 Apr 6.
3
Phase diagram of a polyunsaturated lipid mixture: Brain sphingomyelin/1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine/cholesterol.
Biochim Biophys Acta. 2016 Jan;1858(1):153-61. doi: 10.1016/j.bbamem.2015.10.016. Epub 2015 Oct 23.
4
Role of Aminophospholipids in the Formation of Lipid Rafts in Model Membranes.
J Fluoresc. 2015 Jul;25(4):1037-43. doi: 10.1007/s10895-015-1589-y. Epub 2015 Jun 16.
7
Effect of Electrical Parameters and Cholesterol Concentration on Giant Unilamellar Vesicles Electroformation.
Cell Biochem Biophys. 2020 Jun;78(2):157-164. doi: 10.1007/s12013-020-00910-9. Epub 2020 Apr 21.
9
Solubilization of binary lipid mixtures by the detergent Triton X-100: the role of cholesterol.
Langmuir. 2015;31(1):378-86. doi: 10.1021/la504004r. Epub 2014 Dec 18.
10
Lowering line tension with high cholesterol content induces a transition from macroscopic to nanoscopic phase domains in model biomembranes.
Biochim Biophys Acta Biomembr. 2019 Feb 1;1861(2):478-485. doi: 10.1016/j.bbamem.2018.11.010. Epub 2018 Dec 5.

引用本文的文献

1
Measuring plasma membrane fluidity using confocal microscopy.
Nat Protoc. 2025 Feb 19. doi: 10.1038/s41596-024-01122-8.
2
Advancements in cyclodextrin-based controlled drug delivery: Insights into pharmacokinetic and pharmacodynamic profiles.
Heliyon. 2024 Oct 30;10(21):e39917. doi: 10.1016/j.heliyon.2024.e39917. eCollection 2024 Nov 15.
3
Cyclodextrins: Only Pharmaceutical Excipients or Full-Fledged Drug Candidates?
Pharmaceutics. 2022 Nov 22;14(12):2559. doi: 10.3390/pharmaceutics14122559.
4
-(3-Oxododecanoyl) Homoserine Lactone Is a Generalizable Plasma Membrane Lipid-Ordered Domain Modifier.
Front Physiol. 2022 Feb 22;12:758458. doi: 10.3389/fphys.2021.758458. eCollection 2021.
5
A T-cell independent universal cellular therapy strategy through antigen depletion.
Theranostics. 2022 Jan 1;12(3):1148-1160. doi: 10.7150/thno.66832. eCollection 2022.
7
Evaluating membrane structure by Laurdan imaging: Disruption of lipid packing by oxidized lipids.
Curr Top Membr. 2021;88:235-256. doi: 10.1016/bs.ctm.2021.10.003. Epub 2021 Nov 18.
9
Cyclodextrins increase membrane tension and are universal activators of mechanosensitive channels.
Proc Natl Acad Sci U S A. 2021 Sep 7;118(36). doi: 10.1073/pnas.2104820118.

本文引用的文献

1
Membrane lipid domains and dynamics as detected by Laurdan fluorescence.
J Fluoresc. 1995 Mar;5(1):59-69. doi: 10.1007/BF00718783.
2
Lipid packing determines protein-membrane interactions: challenges for apolipoprotein A-I and high density lipoproteins.
Biochim Biophys Acta. 2010 Jul;1798(7):1399-408. doi: 10.1016/j.bbamem.2010.03.019. Epub 2010 Mar 27.
3
Membrane organization and regulation of cellular cholesterol homeostasis.
J Membr Biol. 2010 Apr;234(3):183-94. doi: 10.1007/s00232-010-9245-6. Epub 2010 Mar 25.
4
Kinetics of cholesterol extraction from lipid membranes by methyl-beta-cyclodextrin--a surface plasmon resonance approach.
Biochim Biophys Acta. 2008 Jan;1778(1):175-84. doi: 10.1016/j.bbamem.2007.09.022. Epub 2007 Oct 4.
5
Use of cyclodextrins to manipulate plasma membrane cholesterol content: evidence, misconceptions and control strategies.
Biochim Biophys Acta. 2007 Jun;1768(6):1311-24. doi: 10.1016/j.bbamem.2007.03.026. Epub 2007 Apr 6.
6
Interaction of high density lipoprotein particles with membranes containing cholesterol.
J Lipid Res. 2007 Aug;48(8):1689-700. doi: 10.1194/jlr.M600457-JLR200. Epub 2007 May 7.
7
Cyclodextrins and their pharmaceutical applications.
Int J Pharm. 2007 Feb 1;329(1-2):1-11. doi: 10.1016/j.ijpharm.2006.10.044. Epub 2006 Nov 9.
8
Visualization and analysis of apolipoprotein A-I interaction with binary phospholipid bilayers.
J Lipid Res. 2005 Apr;46(4):669-78. doi: 10.1194/jlr.M400340-JLR200. Epub 2005 Jan 16.
10
Liquid domains in vesicles investigated by NMR and fluorescence microscopy.
Biophys J. 2004 May;86(5):2910-22. doi: 10.1016/S0006-3495(04)74342-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验