Department of Physics, University of Illinois at Urbana-Champaign, Loomis Laboratory of Physics, 1110 West Green Street, Urbana, Illinois, 61801-3080, USA.
Phys Rev Lett. 2011 Mar 11;106(10):105501. doi: 10.1103/PhysRevLett.106.105501. Epub 2011 Mar 8.
Crystalline materials deform in an intermittent way via dislocation-slip avalanches. Below a critical stress, the dislocations are jammed within their glide plane due to long-range elastic interactions and the material exhibits plastic response, while above this critical stress the dislocations are mobile (the unjammed phase) and the material flows. We use dislocation dynamics and scaling arguments in two dimensions to show that the critical stress grows with the square root of the dislocation density. Consequently, dislocations jam at any density, in contrast with granular materials, which only jam below a critical density.
结晶材料通过位错滑移雪崩以间歇的方式变形。在临界应力以下,由于长程弹性相互作用,位错在其滑移面内被卡住,材料表现出塑性响应,而在这个临界应力以上,位错是可动的(未被卡住的相),材料流动。我们在二维中使用位错动力学和标度分析,表明临界应力随位错密度的平方根增长。因此,位错在任何密度下都会被卡住,这与颗粒材料不同,颗粒材料仅在低于临界密度时才会卡住。