Institute of Mathematics and Physics, Aberystwyth University, Penglais, Aberystwyth, Ceredigion, Wales, SY23 3BZ, United Kingdom.
Phys Rev Lett. 2011 Mar 18;106(11):115704. doi: 10.1103/PhysRevLett.106.115704. Epub 2011 Mar 16.
We develop a simple analytical theory that relates dense sphere packings in a cylinder to corresponding disk packings on its surface. It applies for ratios R=D/d (where d and D are the diameters of the hard spheres and the bounding cylinder, respectively) up to R=1+1/sin(π/5). Within this range the densest packings are such that all spheres are in contact with the cylindrical boundary. The detailed results elucidate extensive numerical simulations by ourselves and others by identifying the nature of various competing phases.
我们提出了一个简单的分析理论,将圆柱体内的密集球体堆积与相应的表面圆盘堆积联系起来。该理论适用于比值 R=D/d(其中 d 和 D 分别是硬球和边界圆柱的直径),直到 R=1+1/sin(π/5)。在这个范围内,最密集的堆积方式是所有球体都与圆柱边界接触。通过确定各种竞争相的性质,详细的结果阐明了我们自己和其他人的大量数值模拟。