Teich Erin G, van Anders Greg, Klotsa Daphne, Dshemuchadse Julia, Glotzer Sharon C
Applied Physics Program, University of Michigan, Ann Arbor, MI 48109;
Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109;
Proc Natl Acad Sci U S A. 2016 Feb 9;113(6):E669-78. doi: 10.1073/pnas.1524875113. Epub 2016 Jan 25.
Dense particle packing in a confining volume remains a rich, largely unexplored problem, despite applications in blood clotting, plasmonics, industrial packaging and transport, colloidal molecule design, and information storage. Here, we report densest found clusters of the Platonic solids in spherical confinement, for up to [Formula: see text] constituent polyhedral particles. We examine the interplay between anisotropic particle shape and isotropic 3D confinement. Densest clusters exhibit a wide variety of symmetry point groups and form in up to three layers at higher N. For many N values, icosahedra and dodecahedra form clusters that resemble sphere clusters. These common structures are layers of optimal spherical codes in most cases, a surprising fact given the significant faceting of the icosahedron and dodecahedron. We also investigate cluster density as a function of N for each particle shape. We find that, in contrast to what happens in bulk, polyhedra often pack less densely than spheres. We also find especially dense clusters at so-called magic numbers of constituent particles. Our results showcase the structural diversity and experimental utility of families of solutions to the packing in confinement problem.
尽管在血液凝固、等离子体、工业包装与运输、胶体分子设计以及信息存储等领域有应用,但在有限空间内的致密粒子堆积仍然是一个丰富且在很大程度上未被探索的问题。在此,我们报告了在球形限制条件下发现的柏拉图立体的最密集簇,其包含多达[公式:见正文]个构成多面体粒子。我们研究了各向异性粒子形状与各向同性三维限制之间的相互作用。最密集簇呈现出多种对称点群,并且在较高的N值时形成多达三层。对于许多N值,二十面体和十二面体形成的簇类似于球体簇。在大多数情况下,这些常见结构是最优球形码的层,鉴于二十面体和十二面体有明显的刻面,这是一个令人惊讶的事实。我们还研究了每种粒子形状的簇密度作为N的函数。我们发现,与在体相中的情况相反,多面体的堆积密度通常低于球体。我们还在所谓的构成粒子幻数处发现了特别密集的簇。我们的结果展示了限制条件下堆积问题的一系列解决方案的结构多样性和实验实用性。