Suppr超能文献

甘氨酸和丙氨酸在 Cu{110}表面湿化学的研究进展:在近环境水蒸气存在下的失稳和分解。

A step toward the wet surface chemistry of glycine and alanine on Cu{110}: destabilization and decomposition in the presence of near-ambient water vapor.

机构信息

Department of Chemistry, The University of Reading, Whiteknights, Reading, RG6 6AD, UK.

出版信息

J Am Chem Soc. 2011 May 4;133(17):6659-67. doi: 10.1021/ja110910y. Epub 2011 Apr 7.

Abstract

The coadsorption of water with organic molecules under near-ambient pressure and temperature conditions opens up new reaction pathways on model catalyst surfaces that are not accessible in conventional ultrahigh-vacuum surface-science experiments. The surface chemistry of glycine and alanine at the water-exposed Cu{110} interface was studied in situ using ambient-pressure photoemission and X-ray absorption spectroscopy techniques. At water pressures above 10(-5) Torr a significant pressure-dependent decrease in the temperature for dissociative desorption was observed for both amino acids, accompanied by the appearance of a new CN intermediate, which is not observed for lower pressures. The most likely reaction mechanisms involve dehydrogenation induced by O and/or OH surface species resulting from the dissociative adsorption of water. The linear relationship between the inverse decomposition temperature and the logarithm of water pressure enables determination of the activation energy for the surface reaction, between 213 and 232 kJ/mol, and a prediction of the decomposition temperature at the solid-liquid interface by extrapolating toward the equilibrium vapor pressure. Such experiments near the equilibrium vapor pressure provide important information about elementary surface processes at the solid-liquid interface, which can be retrieved neither under ultrahigh vacuum conditions nor from interfaces immersed in a solution.

摘要

在近常压和温度条件下,水与有机分子的共吸附在模型催化剂表面上开辟了新的反应途径,这些途径在传统的超高真空表面科学实验中是无法获得的。使用常压光电子能谱和 X 射线吸收光谱技术原位研究了水暴露的 Cu{110}界面上甘氨酸和丙氨酸的表面化学。在水压力高于 10(-5)托的情况下,两种氨基酸的离解脱附温度都表现出显著的压力依赖性下降,同时出现了一个新的 CN 中间态,在较低的压力下观察不到这种中间态。最有可能的反应机制涉及由水的离解吸附产生的 O 和/或 OH 表面物种引起的脱氢。表面反应的活化能在 213 到 232 kJ/mol 之间,通过向平衡蒸气压外推,可以确定表面反应的活化能,并预测固液界面的分解温度。这种接近平衡蒸气压的实验提供了有关固液界面基本表面过程的重要信息,这些信息既不能在超高真空条件下获得,也不能从浸入溶液的界面获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验