Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
J Chem Phys. 2011 Apr 7;134(13):134505. doi: 10.1063/1.3569694.
Is it possible to infer the time evolving quantum state of a multichromophoric system from a sequence of two-dimensional electronic spectra (2D-ES) as a function of waiting time? Here we provide a positive answer for a tractable model system: a coupled dimer. After exhaustively enumerating the Liouville pathways associated to each peak in the 2D-ES, we argue that by judiciously combining the information from a series of experiments varying the polarization and frequency components of the pulses, detailed information at the amplitude level about the input and output quantum states at the waiting time can be obtained. This possibility yields a quantum process tomography (QPT) of the single-exciton manifold, which completely characterizes the open quantum system dynamics through the reconstruction of the process matrix. In this manuscript, we present the general theory as well as specific and numerical results for a homodimer, for which we prove that signals stemming from coherence to population transfer and vice versa vanish upon isotropic averaging, therefore, only allowing for a partial QPT in such case. However, this fact simplifies the spectra, and it follows that only two polarization controlled experiments (and no pulse-shaping requirements) suffice to yield the elements of the process matrix, which survive under isotropic averaging. Redundancies in the 2D-ES amplitudes allow for the angle between the two site transition dipole moments to be self-consistently obtained, hence simultaneously yielding structural and dynamical information of the dimer. Model calculations are presented, as well as an error analysis in terms of the angle between the dipoles and peak amplitude extraction. In the second article accompanying this study, we numerically exemplify the theory for heterodimers and carry out a detailed error analysis for such case. This investigation reveals an exciting quantum information processing (QIP) approach to spectroscopic experiments of excitonic systems, and hence, bridges an important gap between theoretical studies on excitation energy transfer from the QIP standpoint and experimental methods to study such systems in the chemical physics community.
是否可以根据二维电子光谱(2D-ES)随等待时间变化的序列推断多色团系统的时间演化量子态?在这里,我们为一个可处理的模型系统提供了肯定的答案:一个耦合二聚体。在详尽地枚举了 2D-ES 中每个峰的刘维尔途径之后,我们认为通过明智地结合一系列实验的信息,这些实验改变了脉冲的偏振和频率分量,可以在幅度水平上获得关于输入和输出量子态的详细信息在等待时间。这种可能性产生了单激子子空间的量子过程层析(QPT),通过对过程矩阵的重建,完全描述了开放量子系统的动力学。在本文中,我们提出了同二聚体的一般理论以及具体和数值结果,对于同二聚体,我们证明了源自相干到population transfer 和反之亦然的信号在各向同性平均化后消失,因此,在这种情况下仅允许进行部分 QPT。然而,这一事实简化了光谱,并且只有两个偏振控制实验(并且不需要脉冲整形要求)就足以产生过程矩阵的元素,这些元素在各向同性平均化下仍然存在。2D-ES 幅度的冗余允许自洽地获得两个站点跃迁偶极子之间的角度,从而同时获得二聚体的结构和动力学信息。提出了模型计算以及角度之间的误差分析和峰幅度提取。在本研究的第二篇文章中,我们对异二聚体进行了数值实例化,并对此类情况进行了详细的误差分析。该研究揭示了一种令人兴奋的量子信息处理(QIP)方法,用于激子系统的光谱实验,从而在从 QIP 角度研究激发能转移的理论研究和实验方法之间架起了一座重要的桥梁,以研究化学物理学界中的此类系统。