Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA.
J Chem Phys. 2011 Apr 7;134(13):134703. doi: 10.1063/1.3575188.
We present an atomic lattice model for studying the polymerization of silicic acid in sol-gel and related processes for synthesizing silica materials. Our model is based on Si and O atoms occupying the sites of a body-centered-cubic lattice, with all atoms arranged in SiO(4) tetrahedra. This is the simplest model that allows for variation in the Si-O-Si angle, which is largely responsible for the versatility in silica polymorphs. The model describes the assembly of polymerized silica structures starting from a solution of silicic acid in water at a given concentration and pH. This model can simulate related materials-chalcogenides and clays-by assigning energy penalties to particular ring geometries in the polymerized structures. The simplicity of this approach makes it possible to study the polymerization process to higher degrees of polymerization and larger system sizes than has been possible with previous atomistic models. We have performed Monte Carlo simulations of the model at two concentrations: a low density state similar to that used in the clear solution synthesis of silicalite-1, and a high density state relevant to experiments on silica gel synthesis. For the high concentration system where there are NMR data on the temporal evolution of the Q(n) distribution, we find that the model gives good agreement with the experimental data. The model captures the basic mechanism of silica polymerization and provides quantitative structural predictions on ring-size distributions in good agreement with x-ray and neutron diffraction data.
我们提出了一个原子晶格模型,用于研究硅酸在溶胶-凝胶中的聚合以及合成二氧化硅材料的相关过程。我们的模型基于 Si 和 O 原子占据体心立方晶格的位置,所有原子都排列在 SiO(4)四面体中。这是允许 Si-O-Si 角变化的最简单模型,而 Si-O-Si 角在很大程度上决定了二氧化硅多晶型的多样性。该模型从给定浓度和 pH 值的硅酸水溶液开始描述聚合的二氧化硅结构的组装。通过对聚合结构中的特定环几何形状赋予能量惩罚,该模型可以模拟相关的材料 - 硫属化物和粘土。这种方法的简单性使得研究聚合过程的聚合度和更大的系统尺寸成为可能,这是以前的原子模型所不可能的。我们在两个浓度下对模型进行了蒙特卡罗模拟:类似于 silicalite-1 的明胶溶液合成中使用的低密度状态,以及与硅胶合成实验相关的高密度状态。对于具有关于 Q(n)分布的时间演化的 NMR 数据的高浓度系统,我们发现模型与实验数据吻合良好。该模型捕捉了二氧化硅聚合的基本机制,并提供了定量的结构预测,与 X 射线和中子衍射数据吻合良好。