Suppr超能文献

使用三维分子描述符对竞争性 CYP2C9 抑制剂进行比较定量构效关系分析。

Comparative QSAR analyses of competitive CYP2C9 inhibitors using three-dimensional molecular descriptors.

机构信息

Centro de Química da Madeira, Departamento de Química, Universidade da Madeira, Campus da Penteada, Funchal, Portugal.

出版信息

Chem Biol Drug Des. 2011 Jul;78(1):112-23. doi: 10.1111/j.1747-0285.2011.01106.x. Epub 2011 May 26.

Abstract

One of the biggest challenges in QSAR studies using three-dimensional descriptors is to generate the bioactive conformation of the molecules. Comparative QSAR analyses have been performed on a dataset of 34 structurally diverse and competitive CYP2C9 inhibitors by generating their lowest energy conformers as well as additional multiple conformers for the calculation of molecular descriptors. Three-dimensional descriptors accounting for the spatial characteristics of the molecules calculated using E-Dragon were used as the independent variables. The robustness and the predictive performance of the developed models were verified using both the internal [leave-one-out (LOO)] and external statistical validation (test set of 12 inhibitors). The best models (MLR using GETAWAY descriptors and partial least squares using 3D-MoRSE) were obtained by using the multiple conformers for the calculation of descriptors and were selected based upon the higher external prediction ( values of 0.65 and 0.63, respectively) and lower root mean square error of prediction (0.48 and 0.48, respectively). The predictive ability of the best model, i.e., MLR using GETAWAY descriptors was additionally verified on an external test set of quinoline-4-carboxamide analogs and resulted in an value of 0.6. These simple and alignment-independent QSAR models offer the possibility to predict CYP2C9 inhibitory activity of chemically diverse ligands in the absence of X-ray crystallographic information of target protein structure and can provide useful insights about the ADMET properties of candidate molecules in the early phases of drug discovery.

摘要

在使用三维描述符进行定量构效关系(QSAR)研究时,最大的挑战之一是生成分子的生物活性构象。通过生成最低能量构象以及额外的多个构象来计算分子描述符,对 34 种结构多样且具有竞争性的 CYP2C9 抑制剂的数据集进行了比较 QSAR 分析。使用 E-Dragon 计算的、考虑分子空间特征的三维描述符被用作自变量。通过内部(留一法(LOO))和外部统计验证(12 种抑制剂的测试集)验证了所开发模型的稳健性和预测性能。通过使用多个构象计算描述符,获得了最佳模型(使用 GETAWAY 描述符的 MLR 和使用 3D-MoRSE 的偏最小二乘法),并根据更高的外部预测(分别为 0.65 和 0.63)和更低的预测均方根误差(分别为 0.48 和 0.48)选择最佳模型。最佳模型(使用 GETAWAY 描述符的 MLR)的预测能力还在喹啉-4-甲酰胺类似物的外部测试集上进行了额外验证,结果为 0.6。这些简单且不依赖于对齐的 QSAR 模型提供了在没有靶蛋白结构的 X 射线晶体学信息的情况下预测化学多样性配体对 CYP2C9 抑制活性的可能性,并可以在药物发现的早期阶段提供有关候选分子的 ADMET 性质的有用见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验