Sustainable Energy Education and Research Center (SEERC), University of Tennessee, Knoxville, TN 37996, USA.
J Colloid Interface Sci. 2011 Jun 15;358(2):477-84. doi: 10.1016/j.jcis.2011.03.070. Epub 2011 Apr 9.
Systematic and uniform monolayer formation of Photosystem I (PS I) onto self-assembled monolayer (SAM) substrates to enable unidirectional electron transfer is crucial for its successful use in the fabrication of bio-hybrid solid-state electronic or photovoltaic devices. Yet, our recent studies (Mukherjee et al., 2010) indicate that surface self-assembly of PS I from aqueous buffer suspensions onto alkanethiolate SAM/Au substrates frequently leads to complex columnar structures due to solution phase protein aggregations. We investigate the effect of two prototypical non-ionic detergents, n-Dodecyl-β-D-Maltoside (DM) and Triton X-100 (TX-100), on protein-protein interactions via the protein-detergent interfacial chemistry. Dynamic light scattering (DLS) experiments are used to demonstrate the impact of relative protein/detergent concentrations on aggregation dynamics of PS I suspensions. In turn, the surface attachment characteristics of PS I adsorbed from the aforementioned suspensions onto SAM/Au substrate is examined by atomic force (AFM) microscopy. Our results indicate that relative concentration of PS I and detergents (DM or, TX-100) with respect to their critical micelle concentrations (CMC) determines the extent of self-association between PS I complexes driven by the screening induced by detergent micelles and/or, inter-protein distances. Such interfacial phenomena during the PS I-detergent complexation process drives the colloidal system through various regimes of phase separations, suspension and/or, de-aggregation, wherein individual PS I complexes can exist in a frustrated state that prevents favorable orientations for PS I-PS I interactions. The present study presents a novel strategy, heretofore not considered, for tailoring inter-protein distances and protein-protein interactions in solution phase, thereby allowing a superior control on the surface attachment of PS I onto SAM/Au substrates.
将 Photosystem I(PS I)有系统且均匀地单层形成于自组装单层(SAM)基底上,以促成单向电子转移,对于成功将其应用于生物混合固态电子或光伏装置的制造至关重要。然而,我们最近的研究(Mukherjee 等人,2010 年)表明,PS I 从水性缓冲悬浮液在烷硫醇 SAM/Au 基底上的表面自组装,由于溶液相蛋白质聚集,经常导致复杂的柱状结构。我们研究了两种典型的非离子型去垢剂,n-十二基-β-D-麦芽糖苷(DM)和 Triton X-100(TX-100),通过蛋白质-去垢剂界面化学对蛋白质-蛋白质相互作用的影响。动态光散射(DLS)实验用于证明蛋白质/去垢剂浓度相对值对 PS I 悬浮液聚集动力学的影响。反过来,通过原子力(AFM)显微镜检查从上述悬浮液吸附到 SAM/Au 基底上的 PS I 的表面附着特性。我们的结果表明,PS I 和去垢剂(DM 或 TX-100)的相对浓度相对于其临界胶束浓度(CMC),决定了由去垢剂胶束诱导的屏蔽驱动的 PS I 复合物之间的自缔合程度,和/或,蛋白质间的距离。在 PS I-去垢剂复合物形成过程中的这种界面现象,通过各种相分离、悬浮和/或去聚集的阶段,驱使胶体系统,其中各个 PS I 复合物可以处于一种受挫状态,阻止 PS I-PS I 相互作用的有利取向。本研究提出了一种新的策略,迄今尚未考虑,用于调整溶液相中的蛋白质间距离和蛋白质-蛋白质相互作用,从而能够更好地控制 PS I 在 SAM/Au 基底上的表面附着。