Suppr超能文献

应用神经网络预测大气氮素向水生生态系统的沉降。

ANN application for prediction of atmospheric nitrogen deposition to aquatic ecosystems.

机构信息

Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, Singapore 119227, Singapore.

出版信息

Mar Pollut Bull. 2011 Jun;62(6):1198-206. doi: 10.1016/j.marpolbul.2011.03.033. Epub 2011 Apr 9.

Abstract

The occurrences of increased atmospheric nitrogen deposition (ADN) in Southeast Asia during smoke haze episodes have undesired consequences on receiving aquatic ecosystems. A successful prediction of episodic ADN will allow a quantitative understanding of its possible impacts. In this study, an artificial neural network (ANN) model is used to estimate atmospheric deposition of total nitrogen (TN) and organic nitrogen (ON) concentrations to coastal aquatic ecosystems. The selected model input variables were nitrogen species from atmospheric deposition, Total Suspended Particulates, Pollutant Standards Index and meteorological parameters. ANN models predictions were also compared with multiple linear regression model having the same inputs and output. ANN model performance was found relatively more accurate in its predictions and adequate even for high-concentration events with acceptable minimum error. The developed ANN model can be used as a forecasting tool to complement the current TN and ON analysis within the atmospheric deposition-monitoring program in the region.

摘要

在烟霾事件期间,东南亚大气氮沉降(ADN)的发生对受纳水生生态系统产生了不良后果。对间歇性 ADN 的成功预测将有助于定量理解其可能产生的影响。在本研究中,使用人工神经网络(ANN)模型来估算沿海水生生态系统的大气总氮(TN)和有机氮(ON)浓度的大气沉降。所选模型输入变量为大气沉降、总悬浮颗粒物、污染物标准指数和气象参数中的氮物种。还将 ANN 模型的预测结果与具有相同输入和输出的多元线性回归模型进行了比较。结果表明,ANN 模型在预测方面表现出相对更高的准确性,即使对于高浓度事件,也能达到可接受的最小误差,具有足够的预测能力。所开发的 ANN 模型可用作预测工具,对该地区大气沉降监测计划中的当前 TN 和 ON 分析进行补充。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验