Suppr超能文献

具有真实后峰动力学的内侧内嗅网格细胞周期吸引子映射模型中的相位进动和可变空间缩放。

Phase precession and variable spatial scaling in a periodic attractor map model of medial entorhinal grid cells with realistic after-spike dynamics.

机构信息

Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Alberta, Canada.

出版信息

Hippocampus. 2012 Apr;22(4):772-89. doi: 10.1002/hipo.20939. Epub 2011 Apr 11.

Abstract

We present a model that describes the generation of the spatial (grid fields) and temporal (phase precession) properties of medial entorhinal cortical (MEC) neurons by combining network and intrinsic cellular properties. The model incorporates network architecture derived from earlier attractor map models, and is implemented in 1D for simplicity. Periodic driving of conjunctive (position × head-direction) layer-III MEC cells at theta frequency with intensity proportional to the rat's speed, moves an 'activity bump' forward in network space at a corresponding speed. The addition of prolonged excitatory currents and simple after-spike dynamics resembling those observed in MEC stellate cells (for which new data are presented) accounts for both phase precession and the change in scale of grid fields along the dorso-ventral axis of MEC. Phase precession in the model depends on both synaptic connectivity and intrinsic currents, each of which drive neural spiking either during entry into, or during exit out of a grid field. Thus, the model predicts that the slope of phase precession changes between entry into and exit out of the field. The model also exhibits independent variation in grid spatial period and grid field size, which suggests possible experimental tests of the model.

摘要

我们提出了一个模型,该模型通过结合网络和内在细胞特性来描述内侧内嗅皮层(MEC)神经元的空间(栅格场)和时间(相位进动)特性的产生。该模型结合了早期吸引子图模型的网络架构,并为简单起见在 1D 中实现。以与大鼠速度成正比的强度,以 theta 频率周期性地驱动联合(位置×头方向)层 III MEC 细胞,使“活动峰”在网络空间中以相应的速度向前移动。延长兴奋性电流的加入和类似于在 MEC 星状细胞中观察到的简单后峰动力学(为此提供了新数据)解释了相位进动以及 MEC 背腹轴上的栅格场的标度变化。模型中的相位进动取决于突触连接和内在电流,每个电流都在进入或离开栅格场期间驱动神经尖峰。因此,该模型预测相位进动的斜率在进入和离开场之间会发生变化。该模型还表现出网格空间周期和网格场大小的独立变化,这表明可能对该模型进行实验测试。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验