Suppr超能文献

助听后皮质听觉诱发电位对助听器增益变化的反应。

Aided cortical auditory evoked potentials in response to changes in hearing aid gain.

机构信息

National Center for Rehabilitative Auditory Research, Portland VA Medical Center, USA.

出版信息

Int J Audiol. 2011 Jul;50(7):459-67. doi: 10.3109/14992027.2011.568011. Epub 2011 Apr 12.

Abstract

OBJECTIVE

There is interest in using cortical auditory evoked potentials (CAEPs) to evaluate hearing aid fittings and experience-related plasticity associated with amplification; however, little is known about hearing aid signal processing effects on these responses. The purpose of this study was to determine the effect of clinically relevant hearing aid gain settings, and the resulting in-the-canal signal-to-noise ratios (SNRs), on the latency and amplitude of P1, N1, and P2 waves. DESIGN & SAMPLE: Evoked potentials and in-the-canal acoustic measures were recorded in nine normal-hearing adults in unaided and aided conditions. In the aided condition, a 40-dB signal was delivered to a hearing aid programmed to provide four levels of gain (0, 10, 20, and 30 dB). As a control, unaided stimulus levels were matched to aided condition outputs (i.e. 40, 50, 60, and 70 dB) for comparison purposes.

RESULTS

When signal levels are defined in terms of output level, aided CAEPs were surprisingly smaller and delayed relative to unaided CAEPs, probably resulting from increases to noise levels caused by the hearing aid.

DISCUSSION

These results reinforce the notion that hearing aids modify stimulus characteristics such as SNR, which in turn affects the CAEP in a way that does not reliably reflect hearing aid gain.

摘要

目的

使用皮质听觉诱发电位(CAEPs)评估助听器适配和与放大相关的经验相关的可塑性很有意义;然而,对于这些反应与助听器信号处理之间的关系,我们知之甚少。本研究的目的是确定临床相关的助听器增益设置以及由此产生的传入通道信噪比(SNR)对 P1、N1 和 P2 波潜伏期和振幅的影响。

设计和样本

在 9 名听力正常的成年人中记录了诱发电位和传入通道声学测量值,这些人在未佩戴和佩戴助听器的情况下进行了测量。在佩戴助听器的情况下,向助听器提供 40dB 的信号,该助听器被编程为提供 4 个增益水平(0、10、20 和 30dB)。作为对照,为了进行比较,将未佩戴助听器的刺激水平与佩戴助听器的输出水平(即 40、50、60 和 70dB)相匹配。

结果

当以输出水平定义信号水平时,与未佩戴助听器的 CAEPs 相比,佩戴助听器的 CAEPs 出人意料地更小且更延迟,这可能是由于助听器引起的噪声水平增加所致。

讨论

这些结果强化了助听器会改变刺激特征(如 SNR)的观点,这反过来又以一种无法可靠反映助听器增益的方式影响 CAEP。

相似文献

1
Aided cortical auditory evoked potentials in response to changes in hearing aid gain.
Int J Audiol. 2011 Jul;50(7):459-67. doi: 10.3109/14992027.2011.568011. Epub 2011 Apr 12.
2
Cortical auditory-evoked potentials (CAEPs) in adults in response to filtered speech stimuli.
J Am Acad Audiol. 2013 Oct;24(9):807-22. doi: 10.3766/jaaa.24.9.5.
5
Cortical encoding of speech acoustics: Effects of noise and amplification.
Int J Audiol. 2015;54(11):852-64. doi: 10.3109/14992027.2015.1055838. Epub 2015 Jul 23.
6
Effects of hearing aid amplification and stimulus intensity on cortical auditory evoked potentials.
Audiol Neurootol. 2007;12(4):234-46. doi: 10.1159/000101331. Epub 2007 Mar 27.
7
Relationship between aided cortical auditory evoked responses and aided behavioral thresholds.
Int J Pediatr Otorhinolaryngol. 2019 Oct;125:98-102. doi: 10.1016/j.ijporl.2019.05.015. Epub 2019 May 21.
8
9
Human evoked cortical activity to signal-to-noise ratio and absolute signal level.
Hear Res. 2009 Aug;254(1-2):15-24. doi: 10.1016/j.heares.2009.04.002. Epub 2009 Apr 11.
10
Late auditory evoked potentials in elderly long-term hearing-aid users with unilateral or bilateral fittings.
Hear Res. 2011 Oct;280(1-2):58-69. doi: 10.1016/j.heares.2011.04.013. Epub 2011 May 5.

引用本文的文献

1
Acoustic Change Complex Recorded in Hybrid Cochlear Implant Users.
Audiol Neurootol. 2023;28(3):151-157. doi: 10.1159/000527671. Epub 2022 Nov 30.
2
Auditory cortical stimulability in non habilitated individuals - An evidence from CAEPs.
J Otol. 2022 Jul;17(3):146-155. doi: 10.1016/j.joto.2022.05.001. Epub 2022 May 20.
4
Representation of amplified speech at cortical level in good and poor hearing aid performers.
Braz J Otorhinolaryngol. 2020 Sep-Oct;86(5):558-567. doi: 10.1016/j.bjorl.2019.02.010. Epub 2019 Apr 23.
6
A potential neurophysiological correlate of electric-acoustic pitch matching in adult cochlear implant users: Pilot data.
Cochlear Implants Int. 2018 Jul;19(4):198-209. doi: 10.1080/14670100.2018.1442126. Epub 2018 Mar 6.
7
Effects of Amplification on Neural Phase Locking, Amplitude, and Latency to a Speech Syllable.
Ear Hear. 2018 Jul/Aug;39(4):810-824. doi: 10.1097/AUD.0000000000000538.
9

本文引用的文献

1
Mismatch Negativity in the Assessment of Central Auditory Function.
Am J Audiol. 1994 Jul 1;3(2):39-51. doi: 10.1044/1059-0889.0302.39.
2
Long-term signal-to-noise ratio at the input and output of amplitude-compression systems.
J Am Acad Audiol. 2009 Mar;20(3):161-71. doi: 10.3766/jaaa.20.3.2.
3
Human evoked cortical activity to signal-to-noise ratio and absolute signal level.
Hear Res. 2009 Aug;254(1-2):15-24. doi: 10.1016/j.heares.2009.04.002. Epub 2009 Apr 11.
4
Auditory training alters the physiological detection of stimulus-specific cues in humans.
Clin Neurophysiol. 2009 Jan;120(1):128-35. doi: 10.1016/j.clinph.2008.10.005. Epub 2008 Nov 22.
5
Speech evoked potentials: from the laboratory to the clinic.
Ear Hear. 2008 Jun;29(3):285-313. doi: 10.1097/AUD.0b013e3181662c0e.
7
Effects of hearing aid amplification and stimulus intensity on cortical auditory evoked potentials.
Audiol Neurootol. 2007;12(4):234-46. doi: 10.1159/000101331. Epub 2007 Mar 27.
8
The acoustic and perceptual effects of two noise-suppression algorithms.
J Acoust Soc Am. 2007 Jan;121(1):433-41. doi: 10.1121/1.2401656.
9
The neural representation of consonant-vowel transitions in adults who wear hearing AIDS.
Trends Amplif. 2006 Sep;10(3):155-62. doi: 10.1177/1084713806292655.
10
Identification of syllables in noise: electrophysiological and behavioral correlates.
J Acoust Soc Am. 2006 Aug;120(2):926-33. doi: 10.1121/1.2217567.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验