Suppr超能文献

电子健康记录中的协同搜索。

Collaborative search in electronic health records.

机构信息

School of Public Health Department of Health Management and Policy, The University of Michigan, Ann Arbor, Michigan, USA.

出版信息

J Am Med Inform Assoc. 2011 May 1;18(3):282-91. doi: 10.1136/amiajnl-2011-000009.

Abstract

OBJECTIVE

A full-text search engine can be a useful tool for augmenting the reuse value of unstructured narrative data stored in electronic health records (EHR). A prominent barrier to the effective utilization of such tools originates from users' lack of search expertise and/or medical-domain knowledge. To mitigate the issue, the authors experimented with a 'collaborative search' feature through a homegrown EHR search engine that allows users to preserve their search knowledge and share it with others. This feature was inspired by the success of many social information-foraging techniques used on the web that leverage users' collective wisdom to improve the quality and efficiency of information retrieval.

DESIGN

The authors conducted an empirical evaluation study over a 4-year period. The user sample consisted of 451 academic researchers, medical practitioners, and hospital administrators. The data were analyzed using a social-network analysis to delineate the structure of the user collaboration networks that mediated the diffusion of knowledge of search.

RESULTS

The users embraced the concept with considerable enthusiasm. About half of the EHR searches processed by the system (0.44 million) were based on stored search knowledge; 0.16 million utilized shared knowledge made available by other users. The social-network analysis results also suggest that the user-collaboration networks engendered by the collaborative search feature played an instrumental role in enabling the transfer of search knowledge across people and domains.

CONCLUSION

Applying collaborative search, a social information-foraging technique popularly used on the web, may provide the potential to improve the quality and efficiency of information retrieval in healthcare.

摘要

目的

全文搜索引擎可以成为增强电子健康记录(EHR)中存储的非结构化叙事数据重用价值的有用工具。此类工具的有效利用的一个突出障碍源于用户缺乏搜索专业知识和/或医学领域知识。为了解决这个问题,作者通过一个内部开发的 EHR 搜索引擎尝试了“协作搜索”功能,允许用户保留他们的搜索知识并与他人共享。此功能的灵感来自许多在网络上使用的成功的社交信息采集技术,这些技术利用用户的集体智慧来提高信息检索的质量和效率。

设计

作者在四年期间进行了一项实证评估研究。用户样本由 451 名学术研究人员、医疗从业者和医院管理人员组成。该数据使用社交网络分析进行分析,以描绘介导搜索知识传播的用户协作网络的结构。

结果

用户对此概念表现出相当大的热情。该系统处理的大约一半 EHR 搜索(0.44 百万次)基于存储的搜索知识;有 0.16 百万次利用了其他用户提供的共享知识。社交网络分析结果还表明,协作搜索功能产生的用户协作网络在促进跨人群和领域的搜索知识转移方面发挥了重要作用。

结论

应用协作搜索,一种在网络上广泛使用的社交信息采集技术,可能有潜力提高医疗保健信息检索的质量和效率。

相似文献

1
Collaborative search in electronic health records.电子健康记录中的协同搜索。
J Am Med Inform Assoc. 2011 May 1;18(3):282-91. doi: 10.1136/amiajnl-2011-000009.
10
An analysis of clinical queries in an electronic health record search utility.电子健康记录搜索工具中的临床查询分析。
Int J Med Inform. 2010 Jul;79(7):515-22. doi: 10.1016/j.ijmedinf.2010.03.004. Epub 2010 Apr 24.

引用本文的文献

8
Unbiased identification of patients with disorders of sex development.性发育障碍患者的无偏倚识别。
PLoS One. 2014 Sep 30;9(9):e108702. doi: 10.1371/journal.pone.0108702. eCollection 2014.

本文引用的文献

2
An analysis of clinical queries in an electronic health record search utility.电子健康记录搜索工具中的临床查询分析。
Int J Med Inform. 2010 Jul;79(7):515-22. doi: 10.1016/j.ijmedinf.2010.03.004. Epub 2010 Apr 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验