Suppr超能文献

电子健康记录搜索引擎基于语义的查询推荐的开发与以用户为中心的实证评估

Development and empirical user-centered evaluation of semantically-based query recommendation for an electronic health record search engine.

作者信息

Hanauer David A, Wu Danny T Y, Yang Lei, Mei Qiaozhu, Murkowski-Steffy Katherine B, Vydiswaran V G Vinod, Zheng Kai

机构信息

Department of Pediatrics, University of Michigan Medical School, 5312 CC, SPC 5940, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA; School of Information, University of Michigan, 105 South State Street, Ann Arbor, MI 48109, USA.

School of Information, University of Michigan, 105 South State Street, Ann Arbor, MI 48109, USA; Department of Pediatrics, University of Michigan Medical School, 5312 CC, SPC 5940, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA.

出版信息

J Biomed Inform. 2017 Mar;67:1-10. doi: 10.1016/j.jbi.2017.01.013. Epub 2017 Jan 25.

Abstract

OBJECTIVE

The utility of biomedical information retrieval environments can be severely limited when users lack expertise in constructing effective search queries. To address this issue, we developed a computer-based query recommendation algorithm that suggests semantically interchangeable terms based on an initial user-entered query. In this study, we assessed the value of this approach, which has broad applicability in biomedical information retrieval, by demonstrating its application as part of a search engine that facilitates retrieval of information from electronic health records (EHRs).

MATERIALS AND METHODS

The query recommendation algorithm utilizes MetaMap to identify medical concepts from search queries and indexed EHR documents. Synonym variants from UMLS are used to expand the concepts along with a synonym set curated from historical EHR search logs. The empirical study involved 33 clinicians and staff who evaluated the system through a set of simulated EHR search tasks. User acceptance was assessed using the widely used technology acceptance model.

RESULTS

The search engine's performance was rated consistently higher with the query recommendation feature turned on vs. off. The relevance of computer-recommended search terms was also rated high, and in most cases the participants had not thought of these terms on their own. The questions on perceived usefulness and perceived ease of use received overwhelmingly positive responses. A vast majority of the participants wanted the query recommendation feature to be available to assist in their day-to-day EHR search tasks.

DISCUSSION AND CONCLUSION

Challenges persist for users to construct effective search queries when retrieving information from biomedical documents including those from EHRs. This study demonstrates that semantically-based query recommendation is a viable solution to addressing this challenge.

摘要

目的

当用户缺乏构建有效搜索查询的专业知识时,生物医学信息检索环境的效用可能会受到严重限制。为解决这一问题,我们开发了一种基于计算机的查询推荐算法,该算法根据用户最初输入的查询建议语义可互换的术语。在本研究中,我们通过展示其作为搜索引擎一部分的应用来评估这种在生物医学信息检索中具有广泛适用性的方法的价值,该搜索引擎有助于从电子健康记录(EHR)中检索信息。

材料与方法

查询推荐算法利用MetaMap从搜索查询和索引的EHR文档中识别医学概念。来自统一医学语言系统(UMLS)的同义词变体与从历史EHR搜索日志中整理的同义词集一起用于扩展概念。实证研究涉及33名临床医生和工作人员,他们通过一组模拟的EHR搜索任务对系统进行了评估。使用广泛使用的技术接受模型评估用户接受度。

结果

与关闭查询推荐功能相比,打开该功能时搜索引擎的性能评分始终更高。计算机推荐的搜索词的相关性也被评为很高,并且在大多数情况下,参与者自己并未想到这些词。关于感知有用性和感知易用性的问题得到了压倒性的积极回应。绝大多数参与者希望查询推荐功能可用,以协助他们进行日常的EHR搜索任务。

讨论与结论

当从包括EHR在内的生物医学文档中检索信息时,用户构建有效搜索查询仍然面临挑战。本研究表明,基于语义的查询推荐是应对这一挑战的可行解决方案。

相似文献

4
Querying EHRs with a Semantic and Entity-Oriented Query Language.
Stud Health Technol Inform. 2017;235:121-125.
5
Comparing image search behaviour in the ARRS GoldMiner search engine and a clinical PACS/RIS.
J Biomed Inform. 2015 Aug;56:57-64. doi: 10.1016/j.jbi.2015.04.013. Epub 2015 May 19.
6
Query log analysis of an electronic health record search engine.
AMIA Annu Symp Proc. 2011;2011:915-24. Epub 2011 Oct 22.
7
Improving search over Electronic Health Records using UMLS-based query expansion through random walks.
J Biomed Inform. 2014 Oct;51:100-6. doi: 10.1016/j.jbi.2014.04.013. Epub 2014 Apr 21.
8
G-Bean: an ontology-graph based web tool for biomedical literature retrieval.
BMC Bioinformatics. 2014;15 Suppl 12(Suppl 12):S1. doi: 10.1186/1471-2105-15-S12-S1. Epub 2014 Nov 6.
9
Improving biomedical information retrieval by linear combinations of different query expansion techniques.
BMC Bioinformatics. 2016 Jul 25;17 Suppl 7(Suppl 7):238. doi: 10.1186/s12859-016-1092-8.
10
Learning to rank query expansion terms for COVID-19 scholarly search.
J Biomed Inform. 2023 Jun;142:104386. doi: 10.1016/j.jbi.2023.104386. Epub 2023 May 12.

引用本文的文献

2
Clinical Information Retrieval: A Literature Review.
J Healthc Inform Res. 2024 Jan 23;8(2):313-352. doi: 10.1007/s41666-024-00159-4. eCollection 2024 Jun.
5
quEHRy: a question answering system to query electronic health records.
J Am Med Inform Assoc. 2023 May 19;30(6):1091-1102. doi: 10.1093/jamia/ocad050.
6
Blockchains, Property Rights and Health Technology Assessment in the Pharmaceutical and Device (s) Industries.
Innov Pharm. 2018 Nov 30;9(4). doi: 10.24926/iip.v9i4.1444. eCollection 2018.
10
A relevance and quality-based ranking algorithm applied to evidence-based medicine.
Comput Methods Programs Biomed. 2020 Jul;191:105415. doi: 10.1016/j.cmpb.2020.105415. Epub 2020 Feb 24.

本文引用的文献

3
More than half of US hospitals have at least a basic EHR, but stage 2 criteria remain challenging for most.
Health Aff (Millwood). 2014 Sep;33(9):1664-71. doi: 10.1377/hlthaff.2014.0453. Epub 2014 Aug 7.
4
Improving search over Electronic Health Records using UMLS-based query expansion through random walks.
J Biomed Inform. 2014 Oct;51:100-6. doi: 10.1016/j.jbi.2014.04.013. Epub 2014 Apr 21.
8
The factors associated with high-quality communication for critically ill children.
Pediatrics. 2013 Mar;131 Suppl 1(Suppl 1):S90-5. doi: 10.1542/peds.2012-1427k.
9
Fidelity of administrative data when researching Down syndrome.
Med Care. 2014 Aug;52(8):e52-7. doi: 10.1097/MLR.0b013e31827631d2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验