Suppr超能文献

The amphiphilic action of vasopressin and analogues on the plasma membrane of Amoeba proteus.

作者信息

Mayers P, Couillard P

机构信息

Département de Sciences Biologiques, Université de Montréal, Quebec, Canada.

出版信息

Gen Comp Endocrinol. 1990 Oct;80(1):24-32. doi: 10.1016/0016-6480(90)90144-b.

Abstract

Arginine (AVP) and lysine vasopressin induce a weak but statistically significant increase in the water permeability of Amoeba proteus plasmalemma. Vasotocin and deaminovasopressin, which share the hydroosmotic properties of AVP on classical vertebrate systems, are without effects on Amoeba while SKF 101926, a synthetic AVP antagonist, is even more effective than the parent compound. Theophyllin and dibutyryl-cAMP do not affect AVP action on Amoeba. Lithium, oxytocin, and carbachol are also without effect. Thus, it is unlikely that either V2 (cAMP) or V1 (phosphatidylinositol choline) receptors are involved. A clear correlation has been found between the amphiphilic character of tested peptides and their effect on Amoeba water permeability. Classical amphiphilic peptides, melittin, mastoparan, and fragment 1-8 of alpha-neoendorphin, also increased water permeability in Amoeba. It is known that vasopressin can interact with artificial lipid membranes, increasing their permeability to water. We propose that amphiphilic members of the AVP family interact directly with the lipid phase of the Amoeba membrane. Their incorporation within the lipid bilayer may cause local disruptions or may create micellar water channels as shown for other amphiphilic proteins. Our observations provide a model for the early evolution of peptide hormone systems, preceding the appearance of specific membrane receptors and associated second messenger amplifying mechanisms.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验