Departmento de Química, Universidade de Coimbra, 3004-535 Coimbra, Portugal.
Phys Chem Chem Phys. 2011 May 28;13(20):9796-811. doi: 10.1039/c1cp20221a. Epub 2011 Apr 12.
The minimum energy path for isomerization of HO(3) has been explored in detail using accurate high-level ab initio methods and techniques for extrapolation to the complete basis set limit. In agreement with other reports, the best estimates from both valence-only and all-electron single-reference methods here utilized predict the minimum of the cis-HO(3) isomer to be deeper than the trans-HO(3) one. They also show that the energy varies by less than 1 kcal mol(-1) or so over the full isomerization path. A similar result is found from valence-only multireference configuration interaction calculations with the size-extensive Davidson correction and a correlation consistent triple-zeta basis, which predict the energy difference between the two isomers to be of only Δ = -0.1 kcal mol(-1). However, single-point multireference calculations carried out at the optimum triple-zeta geometry with basis sets of the correlation consistent family but cardinal numbers up to X = 6 lead upon a dual-level extrapolation to the complete basis set limit of Δ = (0.12 ± 0.05) kcal mol(-1). In turn, extrapolations with the all-electron single-reference coupled-cluster method including the perturbative triples correction yield values of Δ = -0.19 and -0.03 kcal mol(-1) when done from triple-quadruple and quadruple-quintuple zeta pairs with two basis sets of increasing quality, namely cc-cpVXZ and aug-cc-pVXZ. Yet, if added a value of 0.25 kcal mol(-1) that accounts for the effect of triple and perturbative quadruple excitations with the VTZ basis set, one obtains a coupled cluster estimate of Δ = (0.14 ± 0.08) kcal mol(-1). It is then shown for the first time from systematic ab initio calculations that the trans-HO(3) isomer is more stable than the cis one, in agreement with the available experimental evidence. Inclusion of the best reported zero-point energy difference (0.382 kcal mol(-1)) from multireference configuration interaction calculations enhances further the relative stability to ΔE(ZPE) = (0.51 ± 0.08) kcal mol(-1). A scheme is also suggested to model the full-dimensional isomerization potential-energy surface using a quadratic expansion that is parametrically represented by a Fourier analysis in the torsion angle. The method illustrated at the raw and complete basis-set limit coupled-cluster levels can provide a valuable tool for a future analysis of the available (incomplete thus far) experimental rovibrational data.
HO(3)异构化的最低能量路径已使用准确的高级从头算方法和技术进行了详细研究,以推断到完全基组极限。与其他报告一致,这里使用的仅价电子和全电子单参考方法的最佳估计预测顺式-HO(3)异构体的最低点比反式-HO(3)异构体更深。它们还表明,能量在整个异构化路径上变化不超过 1 kcal mol(-1)左右。从具有大小扩展 Davidson 校正和相关一致三zeta基的仅价电子多参考组态相互作用计算中也得到了类似的结果,预测两种异构体之间的能量差仅为Δ=-0.1 kcal mol(-1)。然而,在最佳三zeta几何形状上进行的单点多参考计算,使用相关一致族的基组,但基数高达 X=6,在双重水平外推到完全基组极限后,得到Δ=(0.12±0.05) kcal mol(-1)。反过来,使用包括微扰三重校正的全电子单参考耦合簇方法进行的外推,当从具有两个质量不断提高的基组的三重四重和四重五重zeta对进行时,得到Δ=-0.19 和-0.03 kcal mol(-1)的值,即 cc-cpVXZ 和 aug-cc-pVXZ。然而,如果添加一个值 0.25 kcal mol(-1),用于在 VTZ 基组中考虑三重和微扰四重激发的效果,则得到耦合簇估计值Δ=(0.14±0.08) kcal mol(-1)。这是首次从系统的从头算计算中表明反式-HO(3)异构体比顺式异构体更稳定,与现有的实验证据一致。包含多参考组态相互作用计算报告的最佳零点能差异(0.382 kcal mol(-1))进一步增强了相对稳定性ΔE(ZPE)=(0.51±0.08) kcal mol(-1)。还提出了一种方案,使用二次展开来模拟全维异构化势能面,该展开在扭转角中通过傅里叶分析参数化表示。在原始和完全基组极限耦合簇水平上说明的方法可以为未来分析现有(迄今为止不完整)实验转动振动数据提供有价值的工具。