Suppr超能文献

在大肠杆菌双相生物过程中同时生产和分配异源聚酮和类异戊二烯天然产物。

Simultaneous production and partitioning of heterologous polyketide and isoprenoid natural products in an Escherichia coli two-phase bioprocess.

机构信息

Department of Chemical and Biological Engineering, Science and Technology Center, Tufts University, 4 Colby Street, Medford, MA 02155, USA.

出版信息

J Ind Microbiol Biotechnol. 2011 Nov;38(11):1809-20. doi: 10.1007/s10295-011-0969-9. Epub 2011 Apr 13.

Abstract

Natural products have long served as rich sources of drugs possessing a wide range of pharmacological activities. The discovery and development of natural product drug candidates is often hampered by the inability to efficiently scale and produce a molecule of interest, due to inherent qualities of the native producer. Heterologous biosynthesis in an engineering and process-friendly host emerged as an option to produce complex natural products. Escherichia coli has previously been utilized to produce complex precursors to two popular natural product drugs, erythromycin and paclitaxel. These two molecules represent two of the largest classes of natural products, polyketides and isoprenoids, respectively. In this study, we have developed a platform E. coli strain capable of simultaneous production of both product precursors at titers greater than 15 mg l(-1). The utilization of a two-phase batch bioreactor allowed for very strong in situ separation (having a partitioning coefficient of greater than 5,000), which would facilitate downstream purification processes. The system developed here could also be used in metagenomic studies to screen environmental DNA for natural product discovery and preliminary production experiments.

摘要

天然产物长期以来一直是具有广泛药理活性的药物的丰富来源。由于天然产物的固有特性,难以有效地规模化生产感兴趣的分子,这常常阻碍了天然产物候选药物的发现和开发。在一个工程友好型和易于处理的宿主中进行异源生物合成成为生产复杂天然产物的一种选择。大肠杆菌以前曾被用于生产两种广受欢迎的天然产物药物——红霉素和紫杉醇的复杂前体。这两种分子分别代表了最大的两类天然产物,聚酮类和异戊二烯类。在这项研究中,我们开发了一种大肠杆菌菌株平台,能够以大于 15 毫克/升的浓度同时生产这两种产物前体。两相分批生物反应器的使用允许非常强的原位分离(具有大于 5000 的分配系数),这将有利于下游的纯化过程。这里开发的系统也可用于宏基因组学研究,以筛选环境 DNA 进行天然产物的发现和初步生产实验。

相似文献

1
Simultaneous production and partitioning of heterologous polyketide and isoprenoid natural products in an Escherichia coli two-phase bioprocess.
J Ind Microbiol Biotechnol. 2011 Nov;38(11):1809-20. doi: 10.1007/s10295-011-0969-9. Epub 2011 Apr 13.
3
The Continuing Development of E. coli as a Heterologous Host for Complex Natural Product Biosynthesis.
Methods Mol Biol. 2016;1401:121-34. doi: 10.1007/978-1-4939-3375-4_8.
4
Heterologous production of polyketides by modular type I polyketide synthases in Escherichia coli.
Curr Opin Biotechnol. 2012 Oct;23(5):727-35. doi: 10.1016/j.copbio.2011.12.029. Epub 2012 Jan 13.
6
Novel approaches and achievements in biosynthesis of functional isoprenoids in Escherichia coli.
Appl Microbiol Biotechnol. 2009 Oct;84(6):1021-31. doi: 10.1007/s00253-009-2166-6. Epub 2009 Aug 12.
7
Heterologous Biosynthesis of Type II Polyketide Products Using .
ACS Chem Biol. 2020 May 15;15(5):1177-1183. doi: 10.1021/acschembio.9b00827. Epub 2019 Dec 16.
8
Improving heterologous polyketide production in Escherichia coli by transporter engineering.
Appl Microbiol Biotechnol. 2015 Oct;99(20):8691-700. doi: 10.1007/s00253-015-6718-7. Epub 2015 Jun 11.
9
Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli.
Science. 2010 Oct 1;330(6000):70-4. doi: 10.1126/science.1191652.
10
De novo biosynthesis of complex natural product sakuranetin using modular co-culture engineering.
Appl Microbiol Biotechnol. 2020 Jun;104(11):4849-4861. doi: 10.1007/s00253-020-10576-1. Epub 2020 Apr 13.

本文引用的文献

1
Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli.
Science. 2010 Oct 1;330(6000):70-4. doi: 10.1126/science.1191652.
2
Construction and performance of heterologous polyketide-producing K-12- and B-derived Escherichia coli.
Lett Appl Microbiol. 2010 Aug;51(2):196-204. doi: 10.1111/j.1472-765X.2010.02880.x. Epub 2010 Jun 1.
3
Streptomyces and Saccharopolyspora hosts for heterologous expression of secondary metabolite gene clusters.
J Ind Microbiol Biotechnol. 2010 Aug;37(8):759-72. doi: 10.1007/s10295-010-0730-9. Epub 2010 May 14.
4
Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism.
Proc Natl Acad Sci U S A. 2010 Feb 9;107(6):2646-51. doi: 10.1073/pnas.0914833107. Epub 2010 Jan 25.
5
Biosynthesis of the salinosporamide A polyketide synthase substrate chloroethylmalonyl-coenzyme A from S-adenosyl-L-methionine.
Proc Natl Acad Sci U S A. 2009 Jul 28;106(30):12295-300. doi: 10.1073/pnas.0901237106. Epub 2009 Jul 9.
6
Drug discovery and natural products: end of an era or an endless frontier?
Science. 2009 Jul 10;325(5937):161-5. doi: 10.1126/science.1168243.
7
Biosynthesis of polyketide synthase extender units.
Nat Prod Rep. 2009 Jan;26(1):90-114. doi: 10.1039/b801658p.
8
Mixed fermentation for natural product drug discovery.
Appl Microbiol Biotechnol. 2009 May;83(1):19-25. doi: 10.1007/s00253-009-1916-9. Epub 2009 Mar 21.
9
Production of benzylisoquinoline alkaloids in Saccharomyces cerevisiae.
Nat Chem Biol. 2008 Sep;4(9):564-73. doi: 10.1038/nchembio.105.
10
A key developmental regulator controls the synthesis of the antibiotic erythromycin in Saccharopolyspora erythraea.
Proc Natl Acad Sci U S A. 2008 Aug 12;105(32):11346-51. doi: 10.1073/pnas.0803622105. Epub 2008 Aug 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验