Suppr超能文献

估算和建立家禽用高粱真代谢能模型。

Estimation and modeling true metabolizable energy of sorghum grain for poultry.

机构信息

Department of Animal Science, Ferdowsi University of Mashhad, Mashhad, Iran.

出版信息

Poult Sci. 2011 May;90(5):1138-43. doi: 10.3382/ps.2010-01005.

Abstract

Sorghum grain is an important ingredient in poultry diets. The TMEn content of sorghum grain is a measure of its quality. As for the other feed ingredients, the biological procedure used to determine the TMEn value of sorghum grain is costly and time consuming. Therefore, it is necessary to find an alternative method to accurately estimate the TMEn content. In this study, 2 methods of regression and artificial neural network (ANN) were developed to describe the TMEn value of sorghum grain based on chemical composition of ash, crude fiber, CP, ether extract, and total phenols. A total of 144 sorghum samples were used to determine chemical composition and TMEn content using chemical analyses and bioassay technique, respectively. The values were consequently subjected to regression and ANN analysis. The fitness of the models was tested using R(2) values, MS error, and bias. The developed regression and ANN models could accurately predict the TMEn of sorghum samples from their chemical composition. The goodness of fit in terms of R(2) values corresponding to testing and training of the ANN model showed a higher accuracy of prediction than the equation established by regression method. In terms of MS error, the ANN model showed lower residuals distribution than the regression model. The results suggest that the ANN model may be used to accurately estimate the TMEn value of sorghum grain from its corresponding chemical composition.

摘要

高粱籽粒是家禽饲料的重要成分。高粱籽粒的总能值(TMEn)是衡量其质量的一个指标。对于其他饲料成分,用于测定高粱籽粒 TMEn 值的生物程序既昂贵又耗时。因此,有必要寻找一种替代方法来准确估计 TMEn 含量。本研究旨在基于灰分、粗纤维、CP、乙醚提取物和总酚的化学组成,开发回归和人工神经网络(ANN)两种方法来描述高粱籽粒的 TMEn 值。使用化学分析和生物测定技术,分别对 144 个高粱样品进行了化学成分和 TMEn 值的测定。随后对这些值进行了回归和 ANN 分析。使用 R2 值、均方误差(MS 误差)和偏差来检验模型的拟合程度。研究结果表明,所开发的回归和 ANN 模型能够准确预测高粱样品的 TMEn 值。就 ANN 模型测试和训练的 R2 值而言,该模型在拟合度方面表现出了比回归方法更高的预测准确性。在 MS 误差方面,ANN 模型的残差分布低于回归模型。这些结果表明,ANN 模型可用于根据高粱籽粒的相应化学成分准确估算其 TMEn 值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验