Suppr超能文献

利用数学模型预测小麦的可代谢能和可消化氨基酸。

Metabolizable energy and digestible amino acid prediction of wheat using mathematical models.

机构信息

Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran, 91775-1163.

出版信息

Poult Sci. 2012 Aug;91(8):2055-62. doi: 10.3382/ps.2011-01912.

Abstract

Wheat is a common raw material used to provide most of the energy and a great portion of amino acids in poultry diets. The routine investigation of metabolizable energy (ME) and digestible amino acid content determination are costly and time consuming for wheat grains. Therefore, it would be helpful if the energy and digestible amino acid content of wheat grain samples could be predicted from their chemical composition. Three studies were conducted to evaluate the probability of AMEn, AME, and apparent ileal digestible amino acid (AIDAA) prediction in wheat samples based on chemical compositions. Multiple linear regression (MLR), partial least square (PLS), and Artificial neural network (ANN) methods were developed to estimate the AME values of wheat grain samples based on total and soluble nonstarch polysaccharides (study 1) and the AMEn based on DM, CP, and ash (study 2). Furthermore, MLR and ANN models were used to estimate the AIDAA via CP content of wheat samples (study 3). The fitness of the models in each study was tested using R2 values, RMS error, mean absolute deviation, mean absolute percentage error, and bias parameters. The results of studies 1 and 2 showed that AME can be predicted from the chemical composition. The prediction of AME of wheat through the ANN-based model showed higher accuracy and lower error parameters as compared with MLR and PLS models in both studies (1 and 2). The results of the third study indicated that CP can be used as a single model input to predict AIDAA in wheat samples. Furthermore, the ANN model may be used to improve model performance to estimate AIDAA as affected by CP content. The results demonstrated that the ANN model may be used to accurately estimate the ME and AIDAA values of wheat grain from its corresponding chemical compositions. As a result, this method provides an opportunity to reduce the risk of an unbalanced level of energy and amino acid in feed formulation for poultry.

摘要

小麦是家禽饲料中提供大部分能量和大量氨基酸的常用原料。常规的代谢能(ME)和可消化氨基酸含量的测定对于小麦颗粒来说既昂贵又耗时。因此,如果能够根据小麦颗粒的化学成分来预测其能量和可消化氨基酸含量,将会很有帮助。进行了三项研究,以评估基于化学成分预测小麦样品中代谢能(AME)、有效代谢能(AMEn)和表观回肠可消化氨基酸(AIDAA)的可能性。研究 1 中,采用多元线性回归(MLR)、偏最小二乘(PLS)和人工神经网络(ANN)方法,根据总非淀粉多糖和可溶非淀粉多糖(study 1)以及 DM、CP 和灰分(study 2)来预测小麦颗粒的 AME 值;研究 2 中,采用 MLR 和 ANN 模型通过 CP 含量预测小麦样品的 AIDAA;研究 3 中,采用 MLR 和 ANN 模型通过 CP 含量预测小麦样品的 AIDAA。在每个研究中,使用 R2 值、均方根误差、平均绝对偏差、平均绝对百分比误差和偏差参数来测试模型的拟合度。研究 1 和 2 的结果表明,可从化学成分预测 AME。在这两项研究中,与 MLR 和 PLS 模型相比,基于 ANN 的模型对小麦 AME 的预测具有更高的准确性和更低的误差参数。第三项研究的结果表明,CP 可以作为单一模型输入来预测小麦样品中的 AIDAA。此外,ANN 模型可用于改善模型性能,以估计 CP 含量对 AIDAA 的影响。结果表明,ANN 模型可用于从相应的化学成分准确估计小麦颗粒的 ME 和 AIDAA 值。因此,该方法为降低家禽饲料配方中能量和氨基酸不平衡的风险提供了机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验