Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA. rjs360@psu.
J Exp Biol. 2011 May 1;214(Pt 9):1523-32. doi: 10.1242/jeb.051763.
Do animals know at a physiological level how much they weigh, and, if so, do they make homeostatic adjustments in response to changes in body weight? Skeletal muscle is a likely tissue for such plasticity, as weight-bearing muscles receive mechanical feedback regarding body weight and consume ATP in order to generate forces sufficient to counteract gravity. Using rats, we examined how variation in body weight affected alternative splicing of fast skeletal muscle troponin T (Tnnt3), a component of the thin filament that regulates the actin-myosin interaction during contraction and modulates force output. In response to normal growth and experimental body weight increases, alternative splicing of Tnnt3 in rat gastrocnemius muscle was adjusted in a quantitative fashion. The response depended on weight per se, as externally attached loads had the same effect as an equal change in actual body weight. Examining the association between Tnnt3 alternative splicing and ATP consumption rate, we found that the Tnnt3 splice form profile had a significant association with nocturnal energy expenditure, independently of effects of weight. For a subset of the Tnnt3 splice forms, obese Zucker rats failed to make the same adjustments; that is, they did not show the same relationship between body weight and the relative abundance of five Tnnt3 β splice forms (i.e. Tnnt3 β2-β5 and β8), four of which showed significant effects on nocturnal energy expenditure in Sprague-Dawley rats. Heavier obese Zucker rats displayed certain splice form relative abundances (e.g. Tnnt3 β3) characteristic of much lighter, lean animals, resulting in a mismatch between body weight and muscle molecular composition. Consequently, we suggest that body weight-inappropriate skeletal muscle Tnnt3 expression in obesity is a candidate mechanism for muscle weakness and reduced mobility. Weight-dependent quantitative variation in Tnnt3 alternative splicing appears to be an evolutionarily conserved feature of skeletal muscle and provides a quantitative molecular marker to track how an animal perceives and responds to body weight.
动物在生理水平上是否知道自己的体重,如果知道,它们是否会根据体重变化做出体内平衡调整?骨骼肌是这种可塑性的一个可能组织,因为承重肌肉会收到有关体重的机械反馈,并消耗 ATP 来产生足以抵抗重力的力。我们使用大鼠研究了体重变化如何影响快速骨骼肌肌钙蛋白 T(Tnnt3)的选择性剪接,肌钙蛋白 T 是细肌丝的一个组成部分,调节收缩过程中的肌动球蛋白相互作用,并调节力输出。响应于正常生长和实验性体重增加,大鼠比目鱼肌中 Tnnt3 的选择性剪接以定量方式进行调整。这种反应取决于体重本身,因为外部附着的负载与实际体重的同等变化具有相同的效果。检查 Tnnt3 选择性剪接与 ATP 消耗率之间的关联,我们发现 Tnnt3 剪接形式谱与夜间能量消耗有显著关联,而与体重的影响无关。对于 Tnnt3 剪接形式的一部分,肥胖 Zucker 大鼠未能做出相同的调整;也就是说,它们在体重和五种 Tnnt3β剪接形式(即 Tnnt3β2-β5 和β8)的相对丰度之间没有表现出相同的关系,其中四种在 Sprague-Dawley 大鼠中对夜间能量消耗有显著影响。较重的肥胖 Zucker 大鼠显示出某些剪接形式的相对丰度(例如 Tnnt3β3),这些形式与体重轻得多的瘦动物的特征相对应,导致体重与肌肉分子组成之间不匹配。因此,我们认为肥胖症中不适当的体重依赖骨骼肌 Tnnt3 表达是肌肉无力和运动能力降低的候选机制。Tnnt3 选择性剪接的体重依赖性定量变化似乎是骨骼肌的一个进化保守特征,并提供了一个定量分子标记,以跟踪动物如何感知和响应体重。