Suppr超能文献

大鼠触须排列的形态学:量化触须-物体接触时空模式的模型。

The morphology of the rat vibrissal array: a model for quantifying spatiotemporal patterns of whisker-object contact.

机构信息

Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, USA.

出版信息

PLoS Comput Biol. 2011 Apr;7(4):e1001120. doi: 10.1371/journal.pcbi.1001120. Epub 2011 Apr 7.

Abstract

In all sensory modalities, the data acquired by the nervous system is shaped by the biomechanics, material properties, and the morphology of the peripheral sensory organs. The rat vibrissal (whisker) system is one of the premier models in neuroscience to study the relationship between physical embodiment of the sensor array and the neural circuits underlying perception. To date, however, the three-dimensional morphology of the vibrissal array has not been characterized. Quantifying array morphology is important because it directly constrains the mechanosensory inputs that will be generated during behavior. These inputs in turn shape all subsequent neural processing in the vibrissal-trigeminal system, from the trigeminal ganglion to primary somatosensory ("barrel") cortex. Here we develop a set of equations for the morphology of the vibrissal array that accurately describes the location of every point on every whisker to within ±5% of the whisker length. Given only a whisker's identity (row and column location within the array), the equations establish the whisker's two-dimensional (2D) shape as well as three-dimensional (3D) position and orientation. The equations were developed via parameterization of 2D and 3D scans of six rat vibrissal arrays, and the parameters were specifically chosen to be consistent with those commonly measured in behavioral studies. The final morphological model was used to simulate the contact patterns that would be generated as a rat uses its whiskers to tactually explore objects with varying curvatures. The simulations demonstrate that altering the morphology of the array changes the relationship between the sensory signals acquired and the curvature of the object. The morphology of the vibrissal array thus directly constrains the nature of the neural computations that can be associated with extraction of a particular object feature. These results illustrate the key role that the physical embodiment of the sensor array plays in the sensing process.

摘要

在所有感觉模态中,神经系统获取的数据都受到外围感觉器官的生物力学、材料特性和形态的影响。大鼠触须(胡须)系统是神经科学中研究传感器阵列的物理体现与感知相关的神经回路之间关系的主要模型之一。然而,到目前为止,还没有对触须阵列的三维形态进行特征描述。定量描述阵列形态很重要,因为它直接约束了在行为过程中产生的机械感觉输入。这些输入反过来又塑造了触须-三叉神经系统中的所有后续神经处理,从三叉神经节到初级体感(“桶状”)皮层。在这里,我们开发了一组触须阵列形态的方程式,可以准确地描述每根胡须上每一点的位置,误差在胡须长度的±5%以内。只需知道胡须的身份(在阵列中的行和列位置),这些方程式就可以确定胡须的二维(2D)形状以及三维(3D)位置和方向。这些方程式是通过对六个大鼠触须阵列的二维和三维扫描进行参数化而开发的,并且参数是专门选择的,与行为研究中通常测量的参数一致。最终的形态模型用于模拟当大鼠使用其胡须以触觉方式探索具有不同曲率的物体时产生的接触模式。模拟结果表明,改变阵列的形态会改变所获取的感觉信号与物体曲率之间的关系。因此,触须阵列的形态直接约束了可以与特定物体特征提取相关联的神经计算的性质。这些结果说明了传感器阵列的物理体现在传感过程中起着关键作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/204c/3072363/8a239f0cc558/pcbi.1001120.g001.jpg

相似文献

1
The morphology of the rat vibrissal array: a model for quantifying spatiotemporal patterns of whisker-object contact.
PLoS Comput Biol. 2011 Apr;7(4):e1001120. doi: 10.1371/journal.pcbi.1001120. Epub 2011 Apr 7.
2
Whisker Vibrations and the Activity of Trigeminal Primary Afferents in Response to Airflow.
J Neurosci. 2019 Jul 24;39(30):5881-5896. doi: 10.1523/JNEUROSCI.2971-18.2019. Epub 2019 May 16.
3
Variations in vibrissal geometry across the rat mystacial pad: base diameter, medulla, and taper.
J Neurophysiol. 2017 Apr 1;117(4):1807-1820. doi: 10.1152/jn.00054.2016. Epub 2016 Nov 23.
4
Quantifying the three-dimensional facial morphology of the laboratory rat with a focus on the vibrissae.
PLoS One. 2018 Apr 5;13(4):e0194981. doi: 10.1371/journal.pone.0194981. eCollection 2018.
5
A dynamical model for generating synthetic data to quantify active tactile sensing behavior in the rat.
Proc Natl Acad Sci U S A. 2021 Jul 6;118(27). doi: 10.1073/pnas.2011905118.
7
Integration of multiple-whisker inputs in rat somatosensory cortex.
Cereb Cortex. 2001 Feb;11(2):164-70. doi: 10.1093/cercor/11.2.164.
9
Mechanical coupling through the skin affects whisker movements and tactile information encoding.
J Neurophysiol. 2019 Oct 1;122(4):1606-1622. doi: 10.1152/jn.00863.2018. Epub 2019 Aug 14.
10
Quantification of vibrissal mechanical properties across the rat mystacial pad.
J Neurophysiol. 2019 May 1;121(5):1879-1895. doi: 10.1152/jn.00869.2016. Epub 2019 Feb 27.

引用本文的文献

1
Wonders of Harbor and Grey Seal Whiskers: Morphology, Natural Frequencies, and 3D Modeling.
Adv Sci (Weinh). 2025 Jun;12(23):e2500724. doi: 10.1002/advs.202500724. Epub 2025 Apr 30.
3
Reliability and stability of tactile perception in the whisker somatosensory system.
Front Neurosci. 2024 May 30;18:1344758. doi: 10.3389/fnins.2024.1344758. eCollection 2024.
4
Global and local neuronal coding of tactile information in the barrel cortex.
Front Neurosci. 2024 Jan 5;17:1291864. doi: 10.3389/fnins.2023.1291864. eCollection 2023.
5
Comparative morphology of the whiskers and faces of mice (Mus musculus) and rats (Rattus norvegicus).
J Exp Biol. 2023 Oct 1;226(19). doi: 10.1242/jeb.245597. Epub 2023 Oct 12.
6
On the intrinsic curvature of animal whiskers.
PLoS One. 2023 Jan 6;18(1):e0269210. doi: 10.1371/journal.pone.0269210. eCollection 2023.
7
Demonstration of three-dimensional contact point determination and contour reconstruction during active whisking behavior of an awake rat.
PLoS Comput Biol. 2022 Sep 15;18(9):e1007763. doi: 10.1371/journal.pcbi.1007763. eCollection 2022 Sep.
9
Conveyance of texture signals along a rat whisker.
Sci Rep. 2021 Jun 30;11(1):13570. doi: 10.1038/s41598-021-92770-3.
10
Constraints on the deformation of the vibrissa within the follicle.
PLoS Comput Biol. 2021 Apr 1;17(4):e1007887. doi: 10.1371/journal.pcbi.1007887. eCollection 2021 Apr.

本文引用的文献

1
The brain in its body: motor control and sensing in a biomechanical context.
J Neurosci. 2009 Oct 14;29(41):12807-14. doi: 10.1523/JNEUROSCI.3338-09.2009.
2
Active touch sensing in the rat: anticipatory and regulatory control of whisker movements during surface exploration.
J Neurophysiol. 2009 Feb;101(2):862-74. doi: 10.1152/jn.90783.2008. Epub 2008 Nov 26.
4
Variability in velocity profiles during free-air whisking behavior of unrestrained rats.
J Neurophysiol. 2008 Aug;100(2):740-52. doi: 10.1152/jn.01295.2007. Epub 2008 Apr 24.
5
Representation of moving wavefronts of whisker deflection in rat somatosensory cortex.
J Neurophysiol. 2007 Sep;98(3):1566-80. doi: 10.1152/jn.00056.2007. Epub 2007 Jun 13.
6
Feedback control in active sensing: rat exploratory whisking is modulated by environmental contact.
Proc Biol Sci. 2007 Apr 22;274(1613):1035-41. doi: 10.1098/rspb.2006.0347.
7
Pelvic growth: ontogeny of size and shape sexual dimorphism in rat pelves.
J Morphol. 2007 Jan;268(1):12-22. doi: 10.1002/jmor.10476.
8
How behavioral constraints may determine optimal sensory representations.
PLoS Biol. 2006 Nov;4(12):e387. doi: 10.1371/journal.pbio.0040387.
9
Right-left asymmetries in the whisking behavior of rats anticipate head movements.
J Neurosci. 2006 Aug 23;26(34):8838-46. doi: 10.1523/JNEUROSCI.0581-06.2006.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验